
The Indo-Australian monsoon and its relationship to ENSO
and IOD in reanalysis data and the CMIP3/CMIP5 simulations

Nicolas C. Jourdain • Alexander Sen Gupta •
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Abstract A large spread exists in both Indian and

Australian average monsoon rainfall and in their interan-

nual variations diagnosed from various observational and

reanalysis products. While the multi model mean monsoon

rainfall from 59 models taking part in the Coupled Model

Intercomparison Project (CMIP3 and CMIP5) fall within

the observational uncertainty, considerable model spread

exists. Rainfall seasonality is consistent across observa-

tions and reanalyses, but most CMIP models produce either

a too peaked or a too flat seasonal cycle, with CMIP5

models generally performing better than CMIP3. Consid-

ering all North-Australia rainfall, most models reproduce

the observed Australian monsoon-El Niño Southern

Oscillation (ENSO) teleconnection, with the strength of the

relationship dependent on the strength of the simulated

ENSO. However, over the Maritime Continent, the simu-

lated monsoon-ENSO connection is generally weaker than

observed, depending on the ability of each model to real-

istically reproduce the ENSO signature in the Warm Pool

region. A large part of this bias comes from the contribu-

tion of Papua, where moisture convergence seems to be

particularly affected by this SST bias. The Indian summer

monsoon-ENSO relationship is affected by overly persis-

tent ENSO events in many CMIP models. Despite signifi-

cant wind anomalies in the Indian Ocean related to Indian

Ocean Dipole (IOD) events, the monsoon-IOD relationship

remains relatively weak both in the observations and in the

CMIP models. Based on model fidelity in reproducing

realistic monsoon characteristics and ENSO teleconnec-

tions, we objectively select 12 ‘‘best’’ models to analyze

projections in the rcp8.5 scenario. Eleven of these models

are from the CMIP5 ensemble. In India and Australia, most

of these models produce 5–20 % more monsoon rainfall

over the second half of the twentieth century than during

the late nineteenth century. By contrast, there is no clear

model consensus over the Maritime Continent.

Keywords Indian monsoon � Australian monsoon �
Maritime Continent � Papuan rainfall � Indonesian rainfall �
ENSO � IOD � CMIP5 � CMIP3 � Monsoon projection

1 Introduction

The mechanisms that drive changes in the Indo-Pacific

summer monsoon system are of considerable interest as

this phenomenon affects many human activities and

resources over broad areas. The Indo-Australian monsoon

consists of the Indian and South-East Asian summer

monsoon that occurs from June to September (JJAS), and

the Australian and Maritime Continent monsoon that

occurs in austral summer (December to March, DJFM)
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(Neale and Slingo 2003). Contrary to popular understand-

ing, the Australian and Maritime Continent monsoon does

not appear to be primarily driven by land-ocean tempera-

ture contrast (Yano and McBride 1998; Chao and Chen

2001), and the importance of land-ocean contrast for the

Indian monsoon is still a matter of debate (Liu and Yanai

2001; Chao and Chen 2001). The presence of the Hima-

laya, however, appears to play a key role in the Indian

Monsoon, essentially by insulating warm moist air over

India from cold dry air further North (Boos and Kuang

2010). The observed monsoon flow and associated rainfall

are shown in Fig. 1.

On interannual timescales, the India-averaged summer

monsoon rainfall tends to be relatively weak when it co-

occurs with the development of an El Niño, and vice versa

for La Niña. Other sea surface temperature (SST) patterns

such as the Arabian Sea upwelling (Izumo et al. 2008) also

seem to affect the regional distribution of monsoon rainfall

within India on interannual timescales (Mishra et al. 2012).

The modulation of the monsoon by El Niño Southern

Oscillation (ENSO) is complicated by the presence of the

Indian Ocean Dipole (IOD, Saji et al. 1999) that disrupts

the ENSO influence on the Indian summer monsoon

(Ashok et al. 2001; Ashok et al. 2004; Ummenhofer et al.

2011). Australian monsoon rainfall also tends to be weak

during El Niño events (McBride and Nicholls 1983;

Holland 1986). The positive phase of the IOD (that peaks

in September–November, SON) also tends to weaken the

following monsoon over the Australian/Maritime continent

(Cai et al. 2005).

For the combined Indo-Australian monsoon system,

Meehl and Arblaster (2002) have described a tropospheric

biennial oscillation (TBO) that links the Indian and the

Australian monsoons through ocean–atmosphere coupled

mechanisms in which the monsoons play an active role. By

contrast, Izumo et al. (2013) have suggested that the

bienniality of the Indo-Australian monsoon system might

be a passive response to the bienniality of the IOD–ENSO

system.

On longer timescales, the impact of climate change on

the monsoon system is a major concern. Climate change

may directly affect the monsoon in two compensating
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Fig. 1 a Observed DJFM

rainfall (mm/day) averaged over

2001–2010, from the satellite-

based data TRMM-3B43.

b Same for JJAS rainfall. The

stream lines in each panel show

the surface wind from the

atmospheric reanalysis

ERAinterim avergaed over the

same period
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ways: 1—warmer SSTs enable more evaporation and tend

to increase the monsoon strength, 2—SSTs warm more in

the equatorial region than in the Tropics, which tends to

weaken the monsoon circulation (Chung and Ramanathan

2006; Krishnan et al. 2012). These two mechanisms are

tightly linked to possible changes in large-scale modes of

SST variability, in particular ENSO and the IOD (Shi et al.

2008; Zhang et al. 2012). Other factors such as, for

instance, changes to upper tropospheric properties may also

influence the monsoon (Rajendran et al. 2012).

Over the last few years, the ability of general circulation

models (GCMs) to realistically simulate the Indo-Pacific

monsoon and its teleconnections has been analyzed in the

context of the Coupled Model Intercomparison Program 3

(CMIP3), contributing to the Intergovernmental Panel on

Climate Change (IPCC) Fourth Assessment Report (IPCC

2007). While the link between ENSO and the Australian

monsoon rainfall is rather well captured by the CMIP3

models (Colman et al. 2011), the ENSO-rainfall relation-

ship is poorly represented near Papua-New Guinea (Cai

et al. 2009). These authors have suggested that the ENSO-

rainfall relationship is affected by the so called ‘‘cold

tongue bias‘‘ where SST is too cold along the equator, and

positive SST anomalies extend too far West during El Niño

events (with a significant impact on the Maritime Continent

rainfall). In the CMIP3 ensemble, there is no model con-

sensus on how interannual variability of tropical Australian

precipitation will change in future climate (Moise et al.

2012). By contrast, a clear increase of future monsoon

rainfall has been found over the Maritime Continent (Smith

et al. 2012). Finally, based on the CMIP3 models, the

South-East Asian summer monsoon is likely to undergo a

slight increase in precipitation in the future (IPCC, Meehl

et al. 2007).

In this paper, we evaluate the Indo-Australian monsoon

and its teleconnections with ENSO and IOD in the CMIP

simulations. We perform a combined analysis of simula-

tions from 24 CMIP3 models and from 35 models taking

part in the new Coupled Model Intercomparison Project 5

(CMIP5). Results from 7 atmospheric reanalyses (atmo-

spheric model and data assimilation system) are also

included as reanalyses are often used as a proxy for

dynamical observations (e.g. wind, pressure) to evaluate

the CMIP model dynamics, or to analyze mechanisms.

Precipitation provides an independent integrated assess-

ment of the reanalyses skills since rainfall observations are

generally not assimilated in the system (see Sect. 2.2). If a

model produces realistic monsoon rainfall across a range of

timescales and in various regions, and has some skill in

responding to large-scale SST variability, then we have

increased confidence in the associated climate projections.

On this basis, we select a subset of models that best rep-

resent the Indo-Australian monsoon and its connections to

ENSO, and we assess projected changes in monsoon

rainfall during the twenty-first century.

2 Datasets

2.1 Index definitions

To provide an overview of model skill, we use box-aver-

aged indices. We use two land-only monsoon rainfall

indices for Australia and India (LAUS and LIND, Table. 1;

Fig. 2), as land-based rainfall has a direct influence on

many human activities and resources, and because long-

term rainfall data are only available over the land. Two

other monsoon indices are also examined: AMAR and

ISAS (Table 1; Fig. 2) that include rainfall over ocean and

land over a larger domain. These indices are potentially

better suited to examine climate teleconnections (e.g.

Meehl and Arblaster 2002). In GCMs, the oceanic com-

ponent often has a higher resolution than the atmospheric

component, so that the atmosphere sees a fractional land

cover over coasts and islands. In such cases, we choose to

define LAUS and LIND over land fractions greater than

50 %.

In addition, standard SST indices are used to describe

the major tropical modes of variability in the Indo-Pacific

region (ENSO and IOD, see Table 1; Fig. 2). It could be

argued that indices based on fixed locations may not fully

capture the model dynamics since simulated variability

may have spatial biases compared to observations. How-

ever, it is also important for the variability to be simulated

at realistic locations as this may affect the propagation of

teleconnection patterns to remote regions (Taschetto and

England 2009). For ENSO, most of the CMIP3 models are

not able to realistically reproduce distinct El Niño Modoki

(also referred to as central Pacific El Niño, or Warm Pool

Table 1 Indices used in this paper

Index Long name Var. References

LIND Land-only Indian monsoon Precip

ISAS South Asia/Indian monsoon Precip Meehl and

Arblaster (2002)

LAUS Land-only Australian

monsoon

Precip

AMAR Maritime Continent/

Australian monsoon

precip Meehl and

Arblaster (2002)

NINO3 ENSO East index SST

NINO34 ENSO central index SST

NINO4 ENSO West index SST

DMI (Indian) Dipole Mode

Index

SST Saji and Yamagata

(2003)

See Fig. 2
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El Niño) and canonical El Niño (also referred to as Cold

Tongue El Niño) (Yu and Kim 2010). In particular, CMIP3

models produce too much coherence between NINO3,

NINO34 and the El Niño Modoki indices (Cai et al. 2009).

The model skill with regard to the representation of these

two kinds of ENSO has shown some improvement in

CMIP5 (Kim and Yu 2012; Taschetto et al. 2013). How-

ever, the majority of CMIP3 and CMIP5 models still fail to

capture the variance associated with these modes realisti-

cally (Roxy et al. 2013; Shamal et al. 2013, under prepa-

ration). To represent ENSO, we primarily use the NINO34

index. It captures both kinds of ENSO without giving too

much importance to strong East Pacific (canonical) El

Niño. It has been suggested that East Pacific events have a

weaker influence on the Indo-Australian monsoon than the

central Pacific El Niños (e.g. Taschetto and England 2009;

Krishna Kumar et al. 2006). For the IOD, Cai et al. (2009)

have shown that most of the CMIP3 models produce a SST

dipole pattern that is similar to observed, even though the

amplitude of the cold tongue varies from model to model

(their Fig. 10). Therefore, the simulated Indian Ocean

Dipole Mode Index (DMI, as defined by Saji and Yamagata

2003) makes a reasonable index to represent the model

IOD.

In this work, all the diagnostics related to the interannual

variability of an index are made after removal of the trend

(linear least mean square fit) and of the climatological

seasonal cycle.

2.2 Observation-based products and reanalyses

We analyze precipitation data from 7 atmospheric reanal-

yses (lower part of Table 2) and from gridded observa-

tional products (upper part of Table 2). Some gridded

Fig. 2 Boxes used to compute

indices defined in Table 1 (DMI

is calculated as DMIa-DMIb),

with the shaded areas showing

the land-based indices

Table 2 Observations (precipitation in upper part, SST in the middle

part) and atmospheric reanalyses (lower part) used in this paper. If

‘‘land’’ is not mentioned, precipitation datasets cover both land and

ocean. Most of the datasets cover up to the recent years (around

2010), except ERA40 that was stopped in 2002 and APHRODITE

that is only available until 2007. The resolution mentioned here is the

one of the gridded dataset, even if most of the reanalyses are produced

using spectral models

Acronym ID Institute Spatial coverage Start date Resol References

CMAP a UCAR/NCAR/CISL/DSS Global 1979 2.5� Xie and Arkin (1997)

GPCP b NOAA/OAR/ESRL PSD, Global 1979 2.5� Adler et al. (2003)

Boulder, CO, US

GPCC c DWD, Germany Global land 1901 0.5� Rudolf et al. (2011)

AWAP d BOM, Australia Austr. land 1900 0.25� Jones et al. (2009)

APHRODITE d ERTDF, Japan S-E Asia land 1951 0.25� Yatagai et al. (2012)

TRMM-3B42 v6 � NASA/GIES/DISC, 50�S–50�N 1998 0.25� Adler et al. (2000)

TRMM-3B43 v6 f USA 50�S–50�N 1998 0.25� Adler et al. (2000)

HadISST g Met Office Global 1870 1.0� Rayner et al. (2003)

NCEP-NCAR I k NOAA/OAR/ESRL PSD, Global 1948 2.5� Kalnay et al. (1996)

NCEP-DOE II l Boulder, CO, Global 1979 2.5� Kalnay et al. (1996)

NCEP-CFSR p USA Global 1979 0.5� Saha et al. (2010)

ERA-40 q ECMWF, UK Global 1957 2.5� Dee et al. (2011)

ERAinterim s ECMWF, UK Global 1979 0.7� Dee et al. (2011)

JRA-25 w JMA/CRIEPI, Japan Global 1979 2.5� Onogi et al. (2007)

MERRA r NASA Global 1979 0.5� Rienecker et al. (2011)
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observational products, such as GPCP, CMAP and TRMM-

3B43, merge gauge analysis and satellite observations

(available since the late 1970s). Before the satellite era,

rainfall data are only available to any significant extent over

land, and based on station measurements (GPCC, AWAP,

APHRODITE). There are significant differences in the

observation datasets, due to retrieval methods, treatments of

uncertainties, and quality checking (e.g. Yin et al. 2004).

Among the 7 atmospheric reanalyses, only ERAinterim

uses a 4D-VAR data assimilation scheme; the others use

3D-VAR. Rainfall from the various reanalyses are purely

model-generated (i.e. a forecast), since observed rainfall is

not assimilated (see references in Table 2). The only

exception is MERRA whose atmospheric data assimilation

has been developed with a special focus on the hydrolog-

ical cycle. While reanalyses generally show some skills in

reproducing the observed seasonal and interannual vari-

ability, their accuracy varies significantly across the

regions (Bosilovich et al. 2008). Uncertainties in reana-

lyzed precipitation may come from limitations in the

dynamical models (e.g. convection, cloud microphysics,

complex topography), from uncertainties in the observa-

tions, and from the data assimilation scheme itself.

The interannual variability of the various rainfall data-

sets for summer monsoon seasons is compared to the

observed variability in the Taylor Diagram in Fig. 3. Over

Australia, the AWAP dataset is generally considered as a

reference, while the APHRODITE dataset is chosen as a

reference for South Asia and India because it has been

developed with a special focus on this region. These two

datasets are based on weather station observations, as is

GPCC, and cover a long time period. In general the

observation and reanalysis datasets are more consistent

over Australia than over India. The spread of reanalysis

precipitation is larger for the Indian monsoon, with outliers

like NCEP-CFSR and, to a lower extent, NCEP-DOE-II.

All the observational products are correlated to AWAP by

at least 0.95 in Australia. Correlation coefficients between

observations and APHRODITE are much lower over India,

with, for instance, CMAP being correlated to APHRO-

DITE by 0.66. Note that 3B43 and 3B42 are only weakly

correlated to APHRODITE, but the overlap is only

10 years (their correlation to GPCC is greater than 0.9 over

the period 1998–2011). The correlation coefficient between

reanalyses and AWAP/APHRODITE is in the range

0.85–0.95 in Australia, and 0.35–0.85 in India. It is pos-

sible that this difference in consistency between India and

Australia could be related to the presence of the Himalaya

whose influence on the atmosphere is difficult to simulate,

and where in-situ observations are sparse and difficult to

assimilate or to interpolate. A possibly stronger influence

of SST for the Australian monsoon compared to the Indian

monsoon may also improve consistency in the reanalyses

given that they are forced by observed SST.
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Fig. 3 a Taylor (2001) diagram for the DJFM Australian monsoon

rainfall index (LAUS). b Same for the JJAS Indian monsoon rainfall

index (LIND). One SD unit on the diagram is 1 SD of AWAP and

APHRODITE in Australia and India respectively. Each dataset is

compared to AWAP/APHRODITE over the common period (e.g.

1948–2009 for NCEP-NCAR but 1998–2009 for TRMM-3B43 in

Australia). The distance from AWAP/APHRODITE represents the

centered root mean square error as compared to AWAP/APHRODITE

(dashed lines, in AWAP/APHRODITE SD units)
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The HadISST dataset is used in this paper (Table 1). We

have obtained very similar results using HadSST2 (Rayner

et al. 2006) that has a coarser (5�) resolution than Had-

ISST, but for which no interpolation is used to fill grid

points where observations are missing (not shown). For the

sake of consistency, we also use SST from reanalyses when

we produce diagnostics mixing SST and precipitation. It is

important to keep in mind that the reanalyses use pre-

scribed ocean SST, except for NCEP-CFSR that has a

coupled ocean component.

2.3 CMIP3 and CMIP5 simulations

We first analyze 24 CMIP3 simulations (Table 3) and 35

CMIP5 simulations (Table 4) based on the historical sim-

ulations (called 20C3M in CMIP3 and historical in CMIP5.

The simulations start in approximately 1850 and end in

approximately 2000 and 2005 for CMIP3 and CMIP5

respectively. The CMIP3 models and experiments have

been widely described in the literature over the last 5 years

(e.g. Randall et al. 2007). Some institutes have increased

the resolution of their models from CMIP3 to CMIP5 (e.g.

CNRM, GISS, INMMRI). In addition, a large number of

new experiments have been included in CMIP5 (Taylor

et al. 2012). Some experiments now include a biogeo-

chemical component accounting for carbon cycles in the

land, atmosphere, and ocean (Earth System Models, see

‘‘ESM’’ in model names of Table 4). It should be noted,

however, that the historical experiment has prescribed gas

concentrations (including CO2). Some of the CMIP3 and

CMIP5 models have repeated historical (and future)

experiments to form an ensemble with different initial

conditions (with the initial state taken from different points

of the pre-Industrial simulation).

In Sect. 3.3, we use a limited number of CMIP5 simu-

lations to examine a future greenhouse gas and aerosols

emission scenario. We use the representative concentration

pathway rcp8.5 (Moss et al. 2010; Riahi et al. 2011). This

scenario corresponds to a radiative forcing of approxi-

mately 8.5 W m-2 higher in 2100 than in the pre-industrial

Table 3 CMIP3 model names; ID for this paper; name of providing

institutes; ocean output mean zonal resolution (at the equator

in �E) 9 mean 25�N–35�N resolution in latitude (in �), and mean

equatorial refinement in brackets (5�S–5�N); atmospheric output

resolution (in �E 9 �N); the number of ensemble members for the

Ocean/Atmosphere components is shown in the Ens O/A column

Model ID Institute Ocean horizontal

resolution

Atmosphere horizontal

resolution

Ens O/A References

bccr-bcm2-0 a BCCR, Norway 1.0 9 1.0 (1.0) 2.8 9 2.8 1/1 Furevik et al. (2003)

cccma-cgcm3-1 b CCCMA, BC, Canada 1.9 9 1.9 (1.9) 3.7 9 3.7 2/5 Kim et al. (2002)

cccma-cgcm3-1-t63 c CCCMA, BC, Canada 1.4 9 0.9 (0.9) 2.8 9 2.8 1/1 Kim et al. (2002)

cnrm-cm3 d CNRM, France 2.0 9 1.0 (1.0) 2.8 9 2.8 1/1 Salas-Mélia et al. (2005)

csiro-mk3-0 e CSIRO, Australia 1.9 9 0.9 (0.9) 1.9 9 1.9 1/2 Gordon et al. (2002)

csiro-mk3-5 f CSIRO, Australia 1.9 9 0.9 (0.9) 1.9 9 1.9 1/1 Gordon et al. (2002)

gfdl-cm2-0 g NOAA, GFDL, USA 1.0 9 1.0 (0.4) 2.5 9 2.0 1/1 Delworth et al. (2006)

gfdl-cm2-1 h NOAA, GFDL, USA 1.0 9 1.0 (0.4) 2.5 9 2.0 1/3 Delworth et al. (2006)

giss-aom i NASA/GISS, USA 4.0 9 3.0 (3.0) 4.0 9 3.0 1/2 Lucarini and Russell (2002)

giss-model-e-h j NASA/GISS, USA 1.0 9 1.0 (1.0) 5.0 9 4.0 4/5 Schmidt et al. (2006)

giss-model-e-r k NASA/GISS, USA 5.0 9 4.0 (4.0) 5.0 9 4.0 9/9 Schmidt et al. (2006)

iap-fgoals1-0-g l IAP, China 1.0 9 1.0 (1.0) 2.8 9 2.8 3/3 Yongqiang et al. (2004)

ingv-echam4 m INGV, Italy 1.0 9 1.0 (1.0) 1.1 9 1.1 1/1 Gualdi et al. (2008)

inmcm3-0 n INM, Russia 2.5 9 2.0 (2.0) 5.0 9 4.0 1/1 Volodin and Diansky (2004)

ipsl-cm4 o IPSL, France 2.0 9 1.0 (1.0) 3.7 9 2.5 1/1 Marti et al. (2005)

miroc3-2-hires p CCSR, Japan 1.2 9 0.6 (0.6) 1.1 9 1.1 1/1 K-1 Developers (2004)

miroc3-2-medres q CCSR, Japan 1.4 9 0.9 (0.6) 2.8 9 2.8 1/3 K-1 Developers (2004)

miub-echo-g r MIUB, Germany and Korea 2.8 9 2.3 (0.5) 3.7 9 3.7 2/5 Min and Hense (2006)

mpi-echam5 s MPI-M, Germany 1.0 9 1.0 (1.0) 1.9 9 1.9 1/3 Jungclaus et al. (2006)

mri-cgcm2-3-2a t MRI, Japan 2.5 9 2.0 (0.5) 2.8 9 2.8 5/5 Yukimoto et al. (2001)

ncar-ccsm3-0 u NCAR, CO, USA 1.1 9 0.5 (0.3) 1.4 9 1.4 2/8 Collins et al. (2006)

ncar-pcm1 v NCAR, CO, USA 1.0 9 1.0 (1.0) 2.8 9 2.8 3/4 Washington et al. (2000)

ukmo-hadcm3 w MOHC, UK 1.2 9 1.2 (1.2) 3.8 9 2.5 1/2 Gordon et al. (2000)

ukmo-hadgem1 x MOHC, UK 1.0 9 1.0 (0.4) 1.9 9 1.2 1/2 Johns et al. (2004)

3078 N. C. Jourdain et al.
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period. This is the most extreme scenario used to constrain

the CMIP5 simulations in the sense that energy and

industrial CO2 emissions increase continuously until at

least 2100 (whereas such emissions decrease from *2080

in rcp6.0 and from *2050 in rcp4.5).

Where we present information based on multi-model

means, we first average across ensemble members of a

given model, before averaging across the models. Where

we consider correlations between several model results, we

assume that each model is different enough to be consid-

ered independent (we thus probably over-estimate the sta-

tistical significance since some models are not strictly

independent). A few of the CMIP3 models included water

only (inmcm3-0) or water and heat (mri-cgcm2-3-2a,

miub-echo-g, cgcm3 T47 and T63) flux adjustment.

Finally, some institutes have produced simulations from

two models run at two different resolutions (subscript LR/

MR in model names of Tables 3, 4), different cloud/

Table 4 CMIP5 model names; ID for this paper; name of providing

institutes; ocean output mean zonal resolution (at the equator

in �E) 9 mean 25�N–35�N resolution in latitude (in �), and mean

equatorial refinement in brackets (5�S–5�N); atmospheric output

resolution (in �E 9 �N); the number of ensemble members for the

Ocean/Atmosphere components is shown in the Ens O/A column

Model ID Institute Ocean horizontal

resolution

Atmosphere horizontal

resolution

Ens O/A References

ACCESS-1.0 A CSIRO-BOM, 1.0 9 1.0 (0.3) 1.9 9 1.2 1/1 BOM (2010)

ACCESS-1.3 B Australia 1.0 9 1.0 (0.3) 1.9 9 1.2 1/1 BOM (2010)

BCC-CSM1-1 C BCC, CMA, China 1.0 9 1.0 (0.3) 2.8 9 2.8 3/3

CanESM2 D CCCMA, Canada 1.4 9 0.9 (0.9) 2.8 9 2.8 5/5 Arora et al. (2011)

CESM1-CAM5 E NSF-DOE-NCAR, USA 1.1 9 0.6 (0.3) 1.2 9 0.9 2/3 Vertenstein et al. (2012)

CESM1-FASTCHEM F NSF-DOE-NCAR, USA 1.1 9 0.6 (0.3) 1.2 9 0.9 3/3 Vertenstein et al. (2012)

CESM1-WACCM G NSF-DOE-NCAR, USA 1.1 9 0.6 (0.3) 2.5 9 1.9 1/1 Vertenstein et al. (2012)

CCSM4 H NCAR, CO, USA 1.1 9 0.6 (0.3) 1.2 9 0.9 5/6 Gent et al. (2011)

CMCC-CM I CMCC, Italia 2.0 9 1.9 (0.6) 0.7 9 0.7 1/1 Scoccimarro et al. (2011)

CNRM-CM5 J CNRM-CERFACS, France 1.0 9 0.8 (0.3) 1.4 9 1.4 10/10 Voldoire et al. (2013)

CSIRO-Mk3-6-0 K CSIRO-QCCCE, Australia 1.9 9 0.9 (0.9) 1.9 9 1.9 10/10 Rotstayn et al. (2012)

Rotstayn et al. (2010)

EC-EARTH L EC-EARTH, Europe 1.0 9 0.8 (0.3) 1.1 9 1.1 7/7 Hazeleger et al. (2010)

FGOALS-g2 M LASG-CESS, China 1.0 9 1.0 (0.5) 2.8 9 2.8 2/3 Yongqiang et al. (2004)

FGOALS-s2 N LASG-IAP, China 1.0 9 1.0 (0.5) 2.8 9 1.7 2/3 Yongqiang et al. (2004)

FIO-ESM O FIO, SOA, China 1.1 9 0.6 (0.3) 2.8 9 2.8 1/1

GFDL-CM3 P NOAA-GFDL, USA 1.0 9 1.0 (0.4) 2.5 9 2.0 1/5 Donner et al. (2011)

GFDL-ESM2G Q NOAA-GFDL, USA 1.0 9 1.0 (0.4) 2.5 9 2.0 1/3 Donner et al. (2011)

GFDL-ESM2M R NOAA-GFDL, USA 1.0 9 1.0 (0.4) 2.5 9 2.0 1/1 Donner et al. (2011)

GISS-E2-H S NASA/GISS, NY, USA 2.5 9 2.0 (2.0) 2.5 9 2.0 5/5 Schmidt et al. (2006)

GISS-E2-R T NASA/GISS, NY, USA 2.5 9 2.0 (2.0) 2.5 9 2.0 5/4 Schmidt et al. (2006)

HadCM3 U NASA/GISS, NY, USA 1.2 9 1.2 (1.2) 3.7 9 2.5 9/4 Collins et al. (2001)

HadGEM2-AO V NIMR-KMA, Korea 1.0 9 1.0 (0.4) 1.9 9 1.2 1/1 Martin et al. (2011)

HadGEM2-CC W MOHC, UK 1.0 9 1.0 (0.4) 1.9 9 1.2 2/3 Martin et al. (2011)

HadGEM2-ES X MOHC, UK 1.0 9 1.0 (0.4) 1.9 9 1.2 2/3 Collins et al. (2011)

INMCM4 Y INM, Russia 0.8 9 0.4 (0.4) 2.0 9 1.5 1/1 Volodin et al. (2010)

IPSL-CM5A-LR Z IPSL, France 2.0 9 1.9 (0.6) 3.7 9 1.9 4/4 Dufresne et al. (2013)

IPSL-CM5B-LR C IPSL, France 2.0 9 1.9 (0.6) 3.7 9 1.9 1/1 Dufresne et al. (2013)

IPSL-CM5A-MR D IPSL, France 1.6 9 1.4 (0.6) 2.5 9 1.3 1/1 Dufresne et al. (2013)

MIROC5 P AORI-NIES- 1.6 9 1.4 (0.6) 1.4 9 1.4 3/3 Watanabe et al. (2010)

MIROC-ESM R -JAMSTEC, Japan 1.4 9 0.9 (0.6) 2.8 9 2.8 3/3 Watanabe et al. (2011)

MPI-ESM-LR X MPI-N, Germany 1.5 9 1.5 (1.5) 1.9 9 1.9 3/3 Raddatz et al. (2007)

MPI-ESM-MR @ MPI-N, Germany 0.4 9 0.4 (0.4) 1.9 9 1.9 3/3 Raddatz et al. (2007)

MRI-CGCM3 # MRI, Japan 1.0 9 0.5 (0.5) 1.1 9 1.1 3/3 Yukimoto et al. (2001)

NorESM1-M $ NCC, Norway 1.1 9 0.6 (0.3) 2.5 9 1.9 3/3 Iversen et al. (2012)

NorESM1-ME & NCC, Norway 1.1 9 0.6 (0.3) 2.5 9 1.9 1/1 Iversen et al. (2012)
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convective parameterization in the atmosphere model (e.g.

IPSL-CM5A/IPSL-CM5B), or different ocean models (e.g.

GFDL-ESM2M/GFDL-ESM2G). In such cases, the two

models are considered separately, as independent models.

Similarly, we consider that the CMIP3 version of a model

is independent from the CMIP5 version (e.g. gfdl-cm2-0/

GFDL-CM3), and we even refer to these two versions as

‘‘two models’’ in the following.

The acronyms used to refer to the institutes in Tables 3,

4 stand for the Environment Research and Technology

Development Fund of the Ministry of the Environment,

Japan (ERTDF), the Commonwealth Scientific and Indus-

trial Research Organisation (CSIRO), the Bureau of

Meteorology (BOM), the Beijing Climate Center (BCC) of

the China Meteorological Administration (CMA), the

Canadian Centre for Climate Modelling and Analysis

(CCCMA), the Centro Euro-Mediterraneo per I Camb-

iamenti Climatici (CMCC), the National Center for

Atmospheric Research (NCAR), the Centre National de

Recherches Meteorologiques (CNRM) of Meteo-France,

the European Centre for Research and Advanced Training

in Scientific Computation (CERFACS), the Queensland

Climate Change Centre of Excellence (QCCCE), the

European Centre for Medium-Range Weather Forecasts

(ECMWF), The National Key Laboratory of Numerical

Modeling for Atmospheric Sciences and Geophysical Fluid

Dynamics (LASG), the Institute of Atmospheric Physics

(IAP) of the Chinese Academy of Sciences, the China

Environmental Science and Sustainability Research Group

(CESS), the Tsinghua University (THU), the National

Oceanic and Atmospheric Administration (NOAA), the

German Weather Service (DWD), the Geophysical Fluid

Dynamics Laboratory (GFDL), the National Aeronautics

and Space Administration (NASA), the Goddard Institute

for Space Studies (GISS), the Met Office Hadley Centre

(MOHC), National Institute of Meteorological Research

(NIMR), the Korea Meteorological Administration (KMA),

the Institute for Numerical Mathematics in Moscow (INM),

the Institut Pierre Simon Laplace (IPSL), the Atmosphere

and Ocean Research Institute (AORI) at the University of

Tokyo, the National Institute for Environmental Studies

(NIES), the Japan Agency for Marine-Earth Science and

Technology (JAMSTEC), the Max Planck Institute for

Meteorology (MPI-M), the Meteorological Research

Institute (MRI), and the Norwegian Climate Centre (NCC).

3 Results

We first evaluate the mean summer monsoon rainfall, the

amplitude of interannual variability, and the seasonal cycle

in each model and reanalysis (Sect. 3.1). Then, we assess

the representation of the monsoon-ENSO and monsoon-

IOD relationships (Sect. 3.2). Based on these results, we

select the most realistic models, and we show future pro-

jections of the monsoon (Sect. 3.3).

3.1 Statistical properties of the historical Indo-

Australian monsoon

The mean Indian and Australian summer monsoon rainfall

is presented for each model and reanalysis in Fig. 4a. The

spread in the observed mean summer monsoon rainfall is

quite large. For instance, the mean JJAS LIND is 6.8 mm/

day in GPCC, versus 5.3 mm/day in APHRODITE. Fur-

thermore, the range of uncertainty in the mean rainfall from

reanalyses is very similar to the range of uncertainty from

the observations. We choose to consider the multi obser-

vation/reanalysis mean (black triangle in Fig. 4a) as our

reference here, with an uncertainty envelope given by the

two-dimensional PDF (Probability Density Function) of

observations and reanalyses (see caption of Fig. 4). The

multi-model mean DJFM Australian monsoon rainfall is

very similar to observational estimates in both the CMIP3

and the CMIP5 models (triangles in Fig. 4a). The multi-

model mean JJAS Indian monsoon rainfall is under-esti-

mated by *15 % in the CMIP3 and CMIP5 simulations

(Fig. 4a), lying on the 75 % envelope of the observations/

reanalyses. In both CMIP3 and CMIP5 simulations, the

relatively good skill of the multi-model mean hides a wide

spread in the mean monsoon rainfall, across individual

CMIP models: from nearly no rainfall to twice the

observed rainfall. The spread, as estimated by the standard

deviation, is 22 % higher in the CMIP5 than the CMIP3

models for LIND, but 5 % smaller for LAUS. Finally, there

is a significant correlation between the average monsoon

rainfall in India, and that in Australia (r = 0.56,

p \ 0.0001) which suggests that discrepancies between

models and observations are related to intrinsic model

performance (e.g. convective scheme, land surface scheme)

and not just to regional dynamics in the models.

The amplitude of the interannual variability is now

evaluated through the standard deviation of summer-

months-averaged summer rainfall (Fig. 4b). The spread in

the observed values has already been discussed for non-

detrended time series in Sect. 2.2. Due to this spread, we

still consider the multi observation/reanalysis mean as a

reference, with an uncertainty envelope given by the PDF.

We nonetheless exclude two outliers from the multi

observation/reanalysis mean and envelope calculation:

NCEP-CFSR and NCEP-DOE-II, because these two rea-

nalyses present a much stronger interannual variability than

any other reanalysis or observation dataset. The standard

deviation of both the Indian and the Australian monsoon

rainfall based on the multi-model mean is in remarkably

good agreement with observations in CMIP3 and CMIP5
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(triangles in Fig. 4b). This again hides a wide spread in the

simulated amplitude of the interannual variability in both

CMIP3 and CMIP5. The spread, as measured by the stan-

dard deviation, is very similar in CMIP3 and CMIP5 for

LIND, but 36 % higher in CMIP3 than in CMIP5 for

LAUS. Finally, there is a significant correlation coefficient

between the amplitude of the monsoon interannual vari-

ability in India and that in Australia (r = 0.52, p \ 0.0001,

based on CMIP3 and CMIP5 together). This is mostly

related to the fact that ENSO is a common driver that

affects the amplitude of both the Indian and the Australian

monsoon: the amplitude of the monsoon rainfall interan-

nual variability is correlated to NINO34 (r = 0.48 for

LAUS, r = 0.43 for LIND, considering CMIP3 and CMIP5

together).

For both the Indian and the Australian monsoons, the

correlation between the mean and the interannual vari-

ability is relatively weak (r = 0.12 for LIND and r = 0.36
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Fig. 4 a Mean DJFM Australian monsoon rainfall (LAUS) as a

function of mean JJAS Indian monsoon rainfall (LIND). b Same as a
but for interannual SD of summer-months-averaged rainfall instead of

means. c RMSE of normalized LAUS seasonal cycles versus RMSE

of normalized LIND seasonal cycles, the RMSE being calculated with

respect to AWAP in Australia and to APHRODITE in India (see

individual seasonal cycles in Fig. 5). Each letter or symbol refers to a

model/dataset from CMIP5 (green, Table 4), CMIP3 (red, Table 3),

or reanalyses/observations (black, Table 2). Triangles show the multi-

model mean. Units in a and b are mm/day, while c has no units. The

number r (upper right of each panel) is the correlation coefficient of

the X - Y scatter plot, for CMIP3 and CMIP5 considered together

(without observations and reanalyses). The PDF contours are

estimated from the sum up of Gaussian functions attributed to each

model point. The SD of each individual Gaussian function is chosen

as 3s=
ffiffiffiffi

N
p

in each direction, where s is the standard deviation of one

group (CMIP3, CMIP5, or observations/reanalyses), and N the

number of elements within the group (such a SD for the Gaussian

function enables to fill the average distance between two neighbor

points among N points normally distributed). Thick (thin) black, red,

and green contours enclose 25 % (75 %) of PDF integrative. The blue

contour encloses 99.9 % of the observations/reanalyses PDF integra-

tive (NCEP-DOE-II and NCEP-CFSR, out of the figure area, are not

considered in the computation of the observation PDF)
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for LAUS). This emphasizes the importance of evaluating a

model both with regard to its mean and its variability. For

instance, the CMIP5 experiment from GFDL-ESM2M

(represented by R) has a realistic mean Australian monsoon

rainfall, but its interannual variability is far too strong.

As many modes of climate variability are phase-locked

to the seasonal cycle, we also evaluate rainfall seasonality

for each CMIP model in Fig. 5. By contrast to the mean

and to the interannual variability, the seasonal cycle is

robust across the observations and reanalyses (see the small

RMS errors in Figs. 4c, 5). Based on the multi-model mean

seasonal cycle, there is a clear improvement from the

CMIP3 to the CMIP5 simulations for both the Indian and

the Australian monsoon (the RMS error is reduced by

25–30 %, see triangles in Fig. 4c). However, the simulated

Australian monsoon seasonal cycle are often either too

peaked in February (e.g. IPSL-CM5B-LR in Fig. 5), or

have an overly long monsoon season with high rainfall

extending into April and November (e.g. CCSM4). The

Fig. 5 Normalized seasonal cycle of LAUS a and LIND b, for

observations/reanalyses (black), CMIP3 (red) and CMIP5 (green),

and sorted by increasing RMSEs (shown on the right of each panel,

and computed with regards to AWAP in Australia and to APHRO-

DITE in India)
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Fig. 6 a Lag correlation between LAUS averaged in DJFM of year 0

and monthly NINO34 values. Thick lines are the means over the

observations/reanalyses (black), CMIP3 (red), and CMIP5 (green).

Semi-transparent areas show the upper and lower quartiles. The

dashed blue thick line in a and d represents AWAP-HadISST. The

yellow area indicates the reference time (t = 0), and its width shows

the DJFM months over which each index is averaged. b Same as a but

for NINO34 instead of LAUS (i.e. lag auto-correlation). c Lag

correlation between NINO34 averaged in DJFM of year 0 and

monthly zonal eastward wind stress anomalies instead of LAUS. For

each panel, the black dashed lines represent the 90 % significance

level of correlation coefficients for a single time-series of 150 years

(considering that the number of degrees of freedom of NINO34 is the

number of months divided by 15 because the NINO34 lag auto-

correlation remains significant during *15 months according to

Burgers 1999)

Table 5 Partial corrleation between DJFM LAUS and 3 ENSO

indices averaged over DJFM (the effect of DMI is removed assuming

a linear influence)

AWAP OBS/REA CMIP3 CMIP5

NINO3 -0.35 -0.22 -0.23 -0.26

NINO34 -0.43 -0.31 -0.25 -0.29

NINO4 -0.43 -0.38 -0.27 -0.31

b
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cccma−cgcm3−1 0.19
IPSL−CM5A−LR 0.09

bcc−csm1−1 0.28
miroc3−2−medres 0.18

HadGEM2−CC 0.11
ncar−pcm1 0.16

NCEP−DOE−I 0I .10
HadGEM2−ES 0.18
mpi−echam5 0.11
MRI−CGCM3 0.09

miroc3−2−hires 0.18
ERAinterim 0.11

miub−echo−g 0.57
inmcm3−0 0.13

EC−EARTH 0.16
GFDL−ESM2G 0.11
MPI−ESM−MR 0.19

GISS−E2−H 0.21
JRA25 0.10

MIROC−ESM 0.27
HadGEM2−AO 0.18

ERA40 0.09
csiro−mk3−0 0.22

MIROC5 0.21
FIO−ESM 0.19
inmcm4 0.13

gfdl−cm2−1 0.11
ukmo−hadcm3 0.08

ipsl−cm4 0.28
CESM1−CAM5 0.12
CNRM−CM5 0.25
FGOALS−g2 0.16

MERRA 0.11
HadCM3 0.09

NCEP−CFSR 0.08
NorESM1−M 0.09

MPI−ESM−LR 0.16
ingv−echam4 0.13
GFDL−CM3 0.21

NCEP−NCAR−I 0.07
FGOALS−s2 0.08

mri−cgcm2−3−2a 0.27
CESM1−WACCM 0.06
AWAP−HadISST 0.00
CSIRO−Mk3−6−0 0.10
GPCP−HadISST 0.00
GPCC−HadISST 0.00

CCSM4 0.10
ACCESS1−0 0.11

CMAP−HadISST 0.00
ACCESS1−3 0.14

CanESM2 0.17
GFDL−ESM2M 0.15

CESM1−FASTCHEM 0.10
NorESM1−ME 0.05

iap−fgoals1−0−g 0.37
gfdl−cm2−0 0.24
cnrm−cm3 0.30

csiro−mk3−5 0.25
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maximum of the Australian monsoon generally occurs on

the right month, despite a few exceptions (e.g. mpi-

echam5, Fig. 5). As for the Australian monsoon, models

often exhibit a too peaked or too flat seasonal cycle in

India. In addition, the Indian monsoon tends to occur later

than in the observations, often peaking more into August

than in July (as observed), and extending too much into

October. In the 20 CMIP simulations that best represent the

seasonal cycles (ranked by RMSE in Fig. 5), only 6 (4) are

from CMIP3 for LAUS (LIND). It should also be noted

that the best CMIP3 model in terms of overall seasonal

cycle (mri-cgcm2-3-2a, represented by t in Fig. 3) incor-

porates both heat and water flux corrections.

3.2 Relationship between SST modes

and the Indo-Australian monsoon

As mentioned in the Introduction, the Indo-Pacific mon-

soon can be strongly modulated by ENSO and the IOD.

Therefore, it is essential to better understand and simulate

the monsoon-ENSO and monsoon-IOD relationships.

These relationships are analyzed in the present section. The

TRMM observational products 3B42 and 3B43 are not

shown here, given the short record period.

3.2.1 Australian monsoon

Surface warming of the equatorial Pacific associated with

El Niño events drives an intensification of the Walker

circulation. As this circulation has its sinking branch

located near the Australian region, El Niño events tend to

weaken average deep convection, i.e. rainfall, over Aus-

tralia. Correlation between LAUS (Australian monsoon)

and simultaneous NINO34 indeed reaches -0.45 in the

observations (see AWAP/HadISST in Fig. 6a). Thus,

*20% of the observed Australian monsoon variance is

related to ENSO variability, consistent with previous esti-

mates (Risbey et al. 2009). The reason why this relation-

ship is not stronger may be related to variations in the zonal

location of ENSO SST anomalies along the Equatorial

Pacific, that in turn influence the location of the sinking

branch of the Walker circulation, as well as moisture

convergence related to Gill-Matsuno circulations (Wang

and Hendon 2007; Taschetto and England 2009). Indeed,

warm anomalies in the central and Western Pacific are

more likely to influence the Australian Monsoon (Table 5).

Air-sea interactions North of Australia might also attenuate

the effect of ENSO on the Australian monsoon (Hendon

2003). Figure 6a also shows that a knowledge of Pacific

SST provides some predictive skill for LAUS from the

previous June–July, which generally corresponds to the

start of the mature phase of ENSO events (Fig. 6b).

Using partial correlations to remove the linear influence

of IOD leads to very similar results (Table 5). This is not

surprising since the IOD is strongly phase-locked to the

seasonal cycle, developing in JJA and peaking in SON.

While several recent studies (e.g. Ummenhofer et al. 2008,

2009; Cai et al. 2011) have demonstrated the Indian

Ocean’s influence on Australian rainfall and drought, the

impact of IOD is mainly restricted to cool season rainfall

(June–October) in southern regions of Australia. Risbey

et al. (2009) have shown that the ENSO mode explains the

largest part of the DJF variance in North Australia. Fur-

thermore, partial correlations between DJFM LAUS and

IOD in SON preceding the monsoon (removing the linear

influence of NINO34) are not significant in the observa-

tions and reanalyses (not shown). This confirms that SON

IOD has nearly no direct impact on the following DJFM

Australian monsoon rainfall (Taschetto et al. 2011).

It appears that the ENSO-monsoon relationship is

weaker in the 7 reanalyses than in any of the observational

products (Fig. 7a). NCEP-NCAR-I, NCEP-CFSR and

MERRA are quite close to the observations, but the other

products show significantly weaker correlations than

observed, in particular NCEP-DOE-II (r = 0.21, vs. 0.45 in

the observations). Because of the complex mixture between

modelling and data assimilation, it is difficult to identify

the origin of these differences.

Based on the multi-model means, the CMIP3 and

CMIP5 simulations generally reproduce the lagged ENSO-

monsoon relationship, even if the instantaneous anti-cor-

relation is weaker than in the observations (r = -0.28 in

CMIP3, and -0.33 in CMIP5). The LAUS-NINO34 anti-

correlation in the CMIP simulations is close to the

observed in December, but drops off too quickly in sub-

sequent months (Fig. 6a). This lack of persistence cannot

be explained by a lack of ENSO persistence, as the timing

of the simulated NINO34 decay is well reproduced in the

models (Fig. 6b). It could however be related to the overly

weak relationship between the strength of the Walker cir-

culation and the NINO34 in the CMIP models. This can be

seen in Fig. 6c, where we have used the zonal wind stress

west of the NINO34 box center (i.e. over the NINO4 box)

as a proxy for the Walker circulation. The difference

between the observations and the CMIP multi-model mean

(Fig. 6c) is greatest at the end of the monsoon season

(February–March), i.e. the Walker circulation anomaly

Fig. 7 a Lag correlation between LAUS averaged in DJFM of year 0

and monthly NINO34 values (months on the X-axis, M for March and

J for June) for observations/reanalyses (black names), CMIP3 (red),

and CMIP5 (green) ranked by increasing correlation in year 0 DJFM.

b Same as a but for correlation between NINO34 averaged in DJFM

and lagged monthly NINO34 values. Pink circles The SD of NINO34

produced by each model. The pink line is the least mean square linear

fit of these circles. The horizontal thick dashed line shows the lower

limit used for model selection in Sect. 3.3

b
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IPSL−CM5A−MR 1.14
IPSL−CM5A−LR 1.03

inmcm3−0 1.69
ingv−echam4 0.99

ipsl−cm4 0.53
MIROC−ESM 1.83
bccr−bcm2−0 0.61

ukmo−hadgem1 1.32
cnrm−cm3 0.76

GISS−E2−H 1.01
GFDL−ESM2G 1.03

giss−model−e−h 0.84
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MPI−ESM−LR 0.98
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HadCM3 1.15
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MPI−ESM−MR 0.73
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CMCC−CM 0.42
giss−model−e−r 0.68

gfdl−cm2−1 0.50
miub−echo−g 0.27

mri−cgcm2−3−2a 0.79
ncar−pcm1 0.52

csiro−mk3−0 0.94
CCSM4 0.11

miroc3−2−hires 1.40
HadGEM2−CC 0.31

inmcm4 1.24
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ERA40 0.10
HadGEM2−AO 0.46

CanESM2 0.96
AWAP−HadISST 0.00
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MIROC5 0.68
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CESM1−CAM5 0.40
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does not persist as long in CMIP models as in the obser-

vations during ENSO events. The reason why the persis-

tence of SST anomaly is better reproduced than the

persistence of wind stress anomaly is unclear. We suggest

that some of the major negative feedbacks that are required

to terminate an El Niño or La Niña event (Guilyardi et al.

2009b) may be poorly represented in the CMIP simulations.

We now describe the inter-model differences in the

ENSO-monsoon relationship, and investigate the origins of

such a spread. This is important both for future model

development and to help select models that are suitable for

projection studies. For instance, a model whose monsoon

rainfall is too closely linked to ENSO, may overestimate the

signature of any future change in ENSO relative to a change

in other drivers of the monsoon. While the part of LAUS

variance related to NINO34 is *20 % (r = 0.45) in the

observations (AWAP and GPCC), it is up to *40 % in three

CMIP3 simulations (csiro-mk3-5, cnrm-cm3 and gfdl-cm2-

0, see Fig. 7a). By contrast, the simultaneous correlation

between LAUS and NINO34 is below the 90 % level of

statistical significance (i.e. r = 0.15) for 12 models, eight of

which are from the CMIP3 ensemble. Finally, we find that

3/4 of the 24 CMIP models that are in the range ±0.1 from

the observed correlation are from the CMIP5 ensemble.

Part of the reason for the inter-model spread can be

found in Fig. 7b: it appears that the models that exhibit a

short persistence of NINO34 auto-correlation (see width of

strong auto-correlation near zero lag) are the models pro-

ducing the weakest ENSO-monsoon relationship. Such low

persistence in some models is probably linked to too many

aborted El Niño or La Niña events, which can be related to

too strong convergence south of the Equator due to the so-

called ‘‘double ITCZ’’ bias found in numerous models

(Guilyardi et al. 2003). The strength of the ENSO-mon-

soon relationship also depends upon the amplitude of

ENSO itself, as shown by pink circles in Fig. 7b. Consid-

ering the CMIP models only, we find that 35 % of the inter-

model variance in DJFM LAUS-NINO34 correlation is

explained by the amplitude of ENSO (namely by the

standard deviation of DJFM NINO34). The amplitude of

ENSO is correlated to the interannual variability of zonal

wind stress over the NINO4 box (r = 0.67), showing that

oceanic and atmospheric biases are strongly coupled

through Bjerkness’ feedback (the literature tends to attri-

bute ENSO biases to the atmospheric component, e.g.

Guilyardi et al. 2009a).

3.2.2 Monsoon over the Maritime Continent

The Maritime Continent is located in the western pole of

ENSO’s signature in SST and rainfall (Lau and Chan 1983).

Using Indonesian rain gauge data, Haylock and McBride

(2001) and Hendon (2003) emphasized very low spatial

coherence in the interannual rainfall variability in the heart of

the monsoon season (in contrast to the transition season prior

to the monsoon). By contrast, more spatial coherence and

predictability in austral summer was found by McBride et al.

(2003) using Outgoing Longwave Radiation (OLR). Here we

find that the reanalysis monsoon rainfall in the AMAR box

(Fig. 2) is much more anti-correlated to DJFM NINO34 than

the Australian monsoon rainfall over land (r = -0.84 and

-0.82 for CMAP and GPCP respectively, see Fig. 8a). Such a

strong correlation over the broad AMAR domain is remi-

niscent of the McBride et al. (2003) results obtained from

OLR. These authors suggested that the coarse resolution of

OLR data (2.5�) might explain the stronger coherence as

compared to studies based on land stations. Our results show

that the high correlation over the entire AMAR domain is still

found in high resolution (*0.5�) reanalyses such as MERRA,

NCEP-CFSR and ERAinterim (Fig. 8a). It is possible that

0.5� is still too coarse to introduce complexity (in orography,

land/ocean distribution, and in the kinds of convective sys-

tems) and subsequent break down in the spatial coherence of

interannual variability. However, we also suggest that oce-

anic rainfall is more closely related to ENSO than land/island

rainfall. For instance, rainfall over the Indonesian islands has

no significant relationship with NINO34 in DJFM (Fig. 9c),

as already noted in the aforementioned papers. Monsoon

rainfall over Papua is also not significantly correlated to

DJFM NINO34 in either the observations and reanalyses

(Fig. 9d), despite stronger monsoonal southward flow during

El Niño events (Fig. 9e). This is probably because El Niño is

associated with cold SST anomalies North of Papua and all

along the monsoon season (see observed SST anomalies over

130�E–150�E in Fig. 8b), which would tend to reduce

evaporation if winds were unchanged. In other words,

stronger monsoon flow seems to be compensated by weaker

humidity uptake by the monsoon flow.

Returning to the broad AMAR index, most reanalyses

reproduce the observed (CMAP and GPCP) enhanced

ENSO-monsoon correlation, although NCEP-NCAR-I and

ERA40 have DJFM correlations that are about half of those

observed. Part of NCEP-NCAR-I and ERA40’s discrep-

ancy appears to results from multi-decadal variability in the

ENSO-monsoon relationship with a weaker relationship in

the earlier part of the record. However, even for the post

Fig. 8 a Lag correlation between AMAR averaged in DJFM of year

0 and monthly NINO34 values (months on the X-axis, M for March

and J for June) for observations/reanalyses (black names), CMIP3

(red), and CMIP5 (green) ranked by increasing correlation in year 0

DJFM (indicated on the left hand side). Names of land-only data are

in gray. b Composite of equatorial Pacific SST anomalies (5�N–5�S

average, in K) for NINO34 greater than 1 SD. The RMSE with

regards to HadISST is indicated on the right hand side. The horizontal

thick dashed line shows the lower limit used for model selection in

Sect. 3.3

b
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1979 era (for which observations are available) the AMAR-

NINO34 correlations for both reanalyses are below 0.65 (as

compared to *0.75 for the other reanalyses, not shown).

Unlike the land-only Australian monsoon rainfall

(Fig. 6), the AMAR rainfall in the CMIP models generally

shows very weak correlations to DJFM NINO34 compared
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Fig. 9 a Lag correlation between AMAR averaged in DJFM of year

0 and monthly NINO34 values. Thick lines are the means over the

observations/reanalyses (black), CMIP3 (red), and CMIP5 (green).

Semi-transparent areas show the upper and lower quartiles. b Same as

a but using partial correlation to remove the linear influence of DMI

in the AMAR-NINO34 relatonship. c Partial lag correlation between

the East and Central (E–C) Indonesian rainfall (i.e. excluding Irian

Jaya) and monthly NINO34 (influence of DMI removed). d Same as

c but for Papuan rainfall (i.e. over Irian Jaya and Papua New Guinea).

e Same as c but for meridian wind stress anomalies North of Papua

(i.e. in the gray box on the map) correlated to NINO34. Dashed

horizontal lines show the 90 % level of significance for correlation of

150 years with *120 degrees of freedom. f Map showing the regions

used to define rainfall and stress anomalies in panels c), d, and e
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to both observations and reanalyses (Fig. 9a). None of

them is as much correlated to NINO34 as in the observa-

tions (Fig. 8a), though this might be partly related to multi-

decadal variability in the observations (see above). In

general the relationship is even weaker in the CMIP3 than

in the CMIP5 models, with no significant DJFM correlation

in the multi-model mean. Only the csiro-mk3.5 and gfdl-

cm2.0 show near-realistic relationship strengths (Fig. 8a).

Part of the discrepancy is related to a significant positive

relationship between ENSO and rainfall over Papua in

most of the CMIP5 models that does not exist in the

observations, i.e. there is more rainfall over Papua during

El Niño events in the CMIP models (Fig. 9d). It can be

understood as follows: the monsoon southward flow

anomaly related to El Nino is well reproduced in the CMIP

models (Fig. 9e). However, to the north of Papua, SSTs are

anomalously warm in most of the models where the

observed El Nino response is a strong cooling (Fig. 7b).

This is a well know systematic bias in the SST response to

ENSO for the CMIP models (e.g. Brown et al. 2012, under

preparation). This leads to an unrealistic moisture conver-

gence over the Papuan region in the models and a positive

rainfall anomaly. Although the SST response to ENSO is

generally improved in the CMIP5 models (Fig. 8b), the

rainfall-ENSO relationship in Papua is not better in CMIP5

than in CMIP3, because stronger SST bias in CMIP3 is

partly compensated by stronger bias of the meridian cir-

culation anomaly (Fig. 9e). In view of the correspondence

between the ranking of correlation coefficients (Fig. 8a)

and SST response to ENSO in the Equatorial Western

Pacific (Fig. 8b), it appears that the SST bias not only

affects Papua, but the entire Maritime Continent. The

rainfall bias also seems to be related to oceanic rainfall

because no strong differences are found between CMIP3

and CMIP5 over Indonesia, Papua or Australia, while a

significant difference is found when considering the Mar-

itime Continent as a whole. Finally, note that as mentioned

above, the IOD has nearly no influence on the monsoon

(compare Fig. 9b, a).

3.2.3 Indian summer monsoon

El Niño Southern Oscillation influences the Indian mon-

soon through changes to the Walker circulation, with warm

SST anomalies in the central Pacific being more likely to

produce a subsidence near India than canonical East Pacific

warm SST anomalies (Krishna Kumar et al. 2006; Ratnam

et al. 2010). Indeed, we find that the JJAS Indian Monsoon

rainfall (LIND) is more anti-correlated to NINO34 than to

either NINO3 or NINO4 (Table 6). In contrast to the

Australian monsoon, the Indian summer monsoon occurs

during the early stages of potential ENSO events that

generally peak between October and February. Indeed,

JJAS LIND is more strongly correlated to NINO34 at the

end of the monsoon season, i.e. August–September

(Fig. 10a), than in June–July, and LIND remains correlated

to NINO34 after end of the normal monsoon season, until

the end of ENSO events (around March of the following

year). The correlations given here are partial correlations,

because we need to remove the role of the IOD in the

ENSO-monsoon relationship. Indeed, when IOD events

occur, they are usually already well developed in June

(even though they become mature in SON), and IOD and

ENSO tend to co-occur in several years (Yamagata et al.

2003; Ashok et al. 2003; Annamalai et al. 2005; Behera

et al. 2006; Luo et al. 2010).

While APHRODITE and GPCC are in good agreement

in terms of simultaneous LIND-NINO34 correlation

(r = 0.53, see Fig. 11), there is a substantial difference

between GPCP (r = -0.61) and CMAP (r = -0.38). Most

of the reanalyses are in the range of observational uncer-

tainty, with the exception of NCEP-DOE-II (r = -0.25).

Based on the multi-model mean, the LIND-NINO34

correlation at zero lag is significantly underestimated by

the CMIP5 models and even more so by the CMIP3 models

(Fig. 10a). Beyond the too weak simultaneous correlation,

the CMIP lag correlation has a different shape than the

observed lag correlation: the anti-correlation peaks in

May–June, with gradually increasing correlations starting

the year before the monsoon, as opposed to a very sharp

increase in correlations in the observations (Fig. 10a). We

suggest that this bias might be related to a bias in the

seasonal cycle of ENSO, and we now describe such a

connection. In the observations and reanalyses, NINO34

anomalies in June–July (i.e. at the beginning of the Indian

monsoon) are related to a developing ENSO event rather

than to a terminating event. This is evident from the fact

that the observed correlation between NINO34 in June–

July and NINO34 in December prior to the monsoon

(December corresponds to the mature stage of ENSO) is

only 0.15, whereas the correlation between NINO34 in

June-July and NINO34 in December following the mon-

soon is as high as 0.80 (see black curve in Fig. 10c). This

asymmetry is much less marked in the CMIP simulations,

Table 6 Partial corrleation between JJAS LIND and 3 ENSO indices

averaged over JJAS (the effect of DMI is removed assuming a linear

influence). Fourth line shows partial corrleation between JJAS LIND

and simulataneous DMI (the effect of ENSO being removed through

the linear relationship with NINO34)

APHRODITE OBS/REA CMIP3 CMIP5

NINO3 -0.45 -0.37 -0.22 -0.28

NINO34 -0.53 -0.47 -0.24 -0.29

NINO4 -0.42 -0.39 -0.26 -0.29

DMI 0.10 0.27 -0.06 -0.09
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Fig. 10 a Lag correlation between LIND averaged in JJAS of year 0

and monthly NINO34 values (months on the X-axis). Thick lines are

the means over the observations/reanalyses (black), CMIP3 (red), and

CMIP5 (green). Semi-transparent areas show the upper and lower

quartiles. The dashed blue thick line represents APHRODITE-

HadISST. The yellow area indicates the reference time (t = 0), and

its width shows the JJAS months over which each index is averaged.

The black dashed lines represent the 90 % significance of correlation

coefficients for a single time-series of 150 years (see caption of

Fig. 6). The thin short-dashed lines represent the 90 % level of

significance for a 30-year timeseries. b Same as a but for ISAS

instead of LIND. c Same as a but for June–July NINO34 instead of

JJAS LIND. d Same as c but for August–September NINO34. e Lag

correlation between DMI and zonal eastward wind stress anomaly in

the region (60�E–100�E) and (20�S–Eq.). f Lag correlation between

DMI and zonal south-eastward wind stress anomaly in the South of

the Arabian Sean (60�E–75�E) and (Eq.–10�N)
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Fig. 11 Lag correlation

between LIND averaged in

JJAS of year 0 and monthly

NINO34 values (months on the

X-axis, M for March and J for

June) for observations/

reanalyses (black names),

CMIP3 (red), and CMIP5

(green) ranked by increasing

correlation in year 0 JJAS. The

horizontal thick dashed line

lower limit used for model

selection in Sect. 3.3
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in particular in CMIP5, where the equivalent correlation is

0.30 in December before the Indian monsoon, and 0.70 in

the following December (green curve in Fig. 10c). In other

words, the June–July NINO34 anomalies are primarily

related to developing ENSO events in the observations,

whereas they are also partly related to the termination of

previous-boreal-winter events in CMIP5 (and CMIP3 to a

lower extent). This can be explained by the overly large

spread in the seasonal cycle of NINO34 (and ENSO in

general) in the CMIP5 simulations, as described by Tas-

chetto et al. (2013).

During the second half of the Indian monsoon season

(August–September), the NINO34 anomalies are a much

better indicator of a developing El Niño or La Niña events

(that will be mature in the following December) both in the

observations and in the CMIP models. Indeed, the corre-

lation in Fig. 10d is near zero in December prior to the

monsoon, and 0.90 in the observations/reanalyses and

CMIP5 simulations (0.80 for CMIP3) in December after

the Indian monsoon.

Results for individual models are shown in Fig. 11. By

looking at the symmetry of the negative correlation about

August at zero lag (i.e. August y0 dashed line in Fig. 11), it

is possible to assess if the Indian monsoon is more closely

associated with the previous ENSO event (e.g. ukmo-

hadcm3, ACCESS-1.3), more closely associated with the

developing ENSO event (e.g. HadGEM2-ES), or if there is

essentially no modulation of the monsoon by ENSO (e.g.

GFDL-ESM2G, GISS-E2-R) . This has important conse-

quences in terms of TBO. Indeed, Li et al. (2012) have

noted that numerous CMIP models tend to produce an in-

phase transition from the Australian monsoon to the Indian

monsoon, while previous studies have described an out-of-

phase transition in the observations (e.g. Meehl 1997). This

significant bias in the CMIP models can be understood in

light of the spurious correlation to the previous-year

ENSO, bearing in mind that ENSO and the Australian

monsoon are anti-correlated (Fig. 6a).

We next analyze the relationship between the IOD and

Indian summer monsoon rainfall in the various datasets.

Positive IOD events have been found to increase Indian

summer monsoon rainfall due to an increased moisture

convergence, and vice versa for negative events (Behera

et al. 1999; Ashok et al. 2001; Ummenhofer et al. 2011).

Table 7 List of the CMIP

models showing the best skills

in term of Indo-Australian

monsoon statistical properties

The number of ensemble

members used for the

assessment of rcp8.5 projections

is shown in the third column.

Are also shown: correlation

coefficients between DJFM

AMAR and simultaneous

NINO34 (col. 4), correlation

coefficients between DJFM

LAUS and simultaneous

NINO34 (col. 5), and

correlation coefficients between

JJAS LIND and simultaneous

NINO34 (col. 6). Correlation

above the selection criteria (see

text) are in bold, others are in

italic. Final selected models are

in bold

Model name ID Ensemble members AMAR-ENSO LAUS-ENSO LIND-ENSO

GPCC c -0.45 -0.53

AWAP/APHRODITE d -0.44 -0.53

csiro-mk3-0 e – 20.27 20.31 -0.23

gfdl-cm2-0 g – 20.61 20.60 20.29

miroc3-2-hires p – 20.33 20.26 -0.09

ncar-ccsm3-0 u – 0.02 0.04 -0.19

ukmo-hadcm3 w – -0.21 20.36 -0.23

ukmo-hadgem1 x - 0.24 -0.11 -0.20

ACCESS-1.0 A 1 20.64 20.46 20.30

CanESM2 D 5 20.44 20.51 20.35

CESM1-CAM5 E – 20.53 20.38 -0.09

CESM1-FASTCHEM F 0 20.65 20.52 20.27

CCSM4 H 6 20.29 20.45 20.27

CNRM-CM5 J – 20.59 20.38 -0.21

FGOALS-g2 M – 20.56 20.40 -0.17

FGOALS-s2 N 3 20.38 20.43 20.28

FIO-ESM O 3 20.60 20.32 20.53

GFDL-CM3 P – 0.05 20.42 20.30

GFDL-ESM2G Q – 0.17 20.28 -0.14

HadCM3 U – -0.17 20.40 20.28

HadGEM2-AO V 1 20.43 20.30 20.42

HadGEM2-ES X 1 20.38 20.24 20.36

MIROC5 P 1 20.52 20.32 20.48

MPI-ESM-LR X – -0.02 20.41 20.31

MPI-ESM-MR @ – -0.19 20.29 20.36

NorESM1-M $ 1 20.67 20.41 20.53

NorESM1-ME & 1 20.58 20.55 20.50
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The IOD can thus counteract the influence of ENSO on

Indian rainfall when they co-occur, but it can also affect

Indian monsoon rainfall when it does not co-occur with an

ENSO event (Ashok et al. 2004; Ummenhofer et al. 2011).

The partial DMI-LIND correlation (removing the linear role

of ENSO in the IOD-monsoon relationship) is shown in

Table 6. The DMI-monsoon correlation is quite low in the

multi observation and reanalysis mean (r = 0.27), and not

even statistically significant at the 90 % level in APHRO-

DITE (r = 0.10) and GPCC (r = 0.12). Thus, the IOD-

monsoon link appears relatively weak, as also noted by

Izumo et al. (2013), even though significant signatures have

been identified based on composite analyses (Ummenhofer

et al. 2011). A positive DMI is associated with an easterly

wind anomaly just south of the Equator in the Indian Ocean

(Fig. 10e), a part of which turns towards India in the

southern Arabian Sea (Fig. 10f), as noted by Ashok et al.

(2004) and Ummenhofer et al. (2011). It seems however

that this flow anomaly over the Arabian Sea remains quite

poorly correlated to DMI (r *0.20) resulting in little overall

influence of the IOD on the Indian rainfall. Another possible

reason for the weak correlations may be due to the asym-

metry in the respective impact of the positive and negative

IODs on summer monsoon intraseasonal Oscillations over

India (Ajayamohan et al. 2008).

Finally, results are relatively similar when considering

the entire South Asian monsoon over land and ocean

(ISAS), with slightly weaker biases (Fig. 10b).
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Fig. 12 Summer monsoon

rainfall averaged over 50-year

periods and divided by the

1850–1899 mean for LAUS (a),

AMAR (b), LIND (c), and ISAS

(d). Error bars show the

confidence interval at the 90 %

level (the uncertainty of the

denominator not taken into

account, so that bars have to be

compared to each others rather

than to unity)
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3.3 Future monsoon projections

3.3.1 Model selection

In order to select a subset of models deemed suitable for

making monsoon projections, we first examine the three

statistical properties of the Indo-Australian monsoon

depicted in Fig. 4. As mentioned in Sect. 3.1, the mean

summer monsoon rainfall and its interannual variability

show a significant spread in the observations. We take this

into account, and select the models that are within the

contour enclosing 99.9 % of the observations/reanalyses

PDF integrative (see Fig. 4 for description of method). This

value is found empirically, in such a way to keep a suffi-

cient number of models in the selection process. Our

overall method of selection allows the elimination of

models based on the observations, taking their uncertainty

into account. Based on this criteria we retain the 25 models

shown in Table 7. Only six of these 25 models are from the

CMIP3 ensemble. It should be noted that these models are

not entirely independent because some components are

commonly used in several models. For instance, CESM1-

CAM5, CESM1-FASTCHEM, CCSM4, FIO-ESM, Nor-

ESM1-M, and NorESM1-ME include an atmospheric

component based on the NCAR Community Atmospheric

Model (CAM), even though versions differ across the

institutes. The Hadley Centre atmospheric model is also the

base of the atmospheric component in ACCESS1-0, Had-

CM3, and HadGEM2-AO. The models ACCESS1-0,

GFDL-CM3, and gfdl-cm2-0 have an ocean component

based on the GFDL Modular Ocean Model (MOM).

Finally, the Parallel Ocean Program (POP), which origi-

nated from the same historical base as MOM in the 1990s,

is also a common base for the ocean component in

CESM1-CAM5, CESM1-FASTCHEM, and CCSM4.

In addition we make a further sub-selection based on the

fidelity of the ENSO-monsoon relationships. We choose a

cutoff such that at least 1/4 of the monsoon variance related

to ENSO is correctly reproduced in the selected models.

For LIND and LAUS, GPCP, APHRODITE and AWAP

are taken as references (Figs. 7, 11). For AMAR, we can-

not exclude that the reason why satellite-era observations

are highly correlated to NINO34 is that there is a strong

inter-decadal variability. We therefore choose the worst

reanalysis as reference (ERA40 in Fig. 8). These thresholds

are shown by horizontal dashed lines in Figs. 7, 8, 11.

For any of these 3 relationships, this approximately cor-

responds to keep correlations higher than the 99% level of

significance. Results are summarized in Table 7: among

the 25 models previously selected, 12 reach the criteria

based on the three monsoon-ENSO relationships. Only one

of them (gfdl-cm2-0) is from the CMIP3 ensemble. In the

following, we analyze the monsoon response under the

rcp8.5 emission scenario in 10 of these CMIP5 models.

The CMIP3 simulation from gfdl-cm2-0 is not considered

because the emission scenario is different from the one

used in CMIP5, and the CMIP5 simulations from CESM1-

FASTCHEM were not available at the time of writing.

When available, multiple ensemble members were used for

each of the 10 models (Table 7).

3.3.2 Results

The evolution of the monsoon rainfall in the different

boxes used in this paper is shown in Fig. 12. We average

the indices over 50-year periods to increase the statistical

significance. The confidence interval for each period is thus

proportional to s=
ffiffiffiffiffiffiffiffiffi

50N
p

; where s is the interannual stan-

dard deviation and N the number of ensemble members

(t statistics, e.g. Von Storch and Zwiers 2002). Two

50-year periods are considered significantly different if

there is no overlap of the error bars in Fig. 12 (we consider

a confidence interval at the 90 % level).

Only two of the 10 models show a significant increase

in monsoon rainfall over Australia during the historical

(1850–2000) period: MIROC5 and FGOALS-s2

(Fig. 12a). This contrasts with the results from Shi et al.

(2008) and Smith (2004) who have reported an increase of

the observed land-based Australian monsoon rainfall in

the twentieth century. Now considering the future pro-

jections, we find that seven of the 10 CMIP5 models show

a significant rainfall increase at the end of the twenty-first

century as compared to the 1850–1899 period. This

increase is in the range 12–22 %. The three remaining

models do not show a significant trend from 1850 to 2100.

None of the selected CMIP5 models shows an increase

in monsoon rainfall over the Maritime Continent during the

historical period (Fig. 12b), but one model (HadGEM2-

AO) produces significantly less monsoon rainfall at the end

of the twentieth century than at the end of the nineteenth

century. There is no clear consensus between the models

concerning the future monsoon rainfall over the Maritime

Continent: three models produce less rainfall in 2050–2099

than during the 1850–1999 period (FGOALS-s2, Had-

GEM2-AO, CanESM2); two models show trends that are

not significant at the 90 % level (ACCESS1-0 and Had-

GEM2-ES); the five remaining models produce between 3

and 13 % more monsoon rainfall at the end of the twenty-

Fig. 13 DJFM rainfall in the observations (a) and in the historical

CMIP5 simulations (b), and difference between the 2006–2100 mean

rainfall from rcp8.5 experiments and the 1850–2005 mean rainfall (c).

Maps from NorESM1-M are not shown since they are quite similar to

the maps from NorESM1-ME

b
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first century as compared to the end of the nineteenth

century.

The picture is also not clear for the rainfall evolution

over India and South-Asia over the nineteenth and twen-

tieth century (Fig. 12c, d). Indeed, the majority of models

do not show a significant change, while two models pro-

duce slightly more rainfall at the end of the twentieth

century, and 2–3 models produce less rain during this

period. These results must be considered in the perspective

of Goswami et al. (2006)’s results: using observations, they

have shown that the contribution from increasing heavy

events had been offset by decreasing moderate events in

the historical period, accounting for an insignificant rainfall

trend to date. The consensus becomes much clearer how-

ever by the end of the twenty-first century when nine of the

10 selected models produce significantly more monsoon

rainfall than during any of the 50-year period of the nine-

teenth to twentieth centuries. The remaining model (FIO-

ESM) does not show any trend. The simulated increase in

land-based rainfall ranges from 6 to 18 %, except for

FGOALS-s2 that produces 46 % more rainfall at the end of

the twenty-first century (Fig. 12c). The increase is in the

range 7–15 % when considering the whole South Asia

domain, except for FGOALS-s2 that produces 27 % more

monsoon rainfall after 2050 than in the nineteenth century

(Fig. 12d).

Finally, we investigate potential trends in the amplitude

of the interannual variability of the summer monsoon

rainfall. This analysis is done in a similar way to the mean,

but using 90 % confidence intervals based on the v2 sta-

tistics (suitable for tests on standard deviations, Von Storch

and Zwiers 2002). Only FGOALS-s2 produces a

strengthened interannual variability over Australia (by

45 %), the other models producing no significant change

by 2100 (not shown). Over the Maritime Continent

(AMAR), four of the 11 selected models show a significant

increase of the interannual standard deviation (not shown).

Interestingly, two of these models (FGOALS-s2 and Had-

GEM2-AO) are among the few models that simulated a

decreased mean AMAR monsoon rainfall at the end of the

twenty-first century (Fig. 12b). CCSM4 and FGOALS-s2

produce an increased interannual variability for LIND (by

17 and 60 % respectively) and for ISAS (by 20 and 42 %

respectively) (not shown). The remaining models do not

show a significant change in the amplitude of the interan-

nual variability.

4 Discussion

In this paper, we have undertaken a broad assessment in

order to describe 59 CMIP models in a concise way. Based

on a subset of most realistic models we have found some

consistency in projections for Indian and Australian rain-

fall, based on different monsoon region metrics. We now

assess spatial variations in the projections for these regions.

Historical summer monsoon rainfall and its change in the

rcp8.5 scenario are shown in Figs. 13 and 14 for the

Australian/Maritime Continent region and the Indian

monsoon respectively. As already seen in Fig. 12, a

majority of the models produce more monsoon rainfall

over North Australia in the future. Shi et al. (2008) have

reported a larger rainfall increase in North-West Australia

than in North-East Australia during the latter half of the

twentieth century. There is however no consistent pattern

in the selected rcp8.5 simulations, some of them showing a

zonal asymmetry while others show a more uniform

change in the increase, or the opposite asymmetry

(Fig. 13c).

In Austral summer, the Maritime Continent is at the

intersection of three major convergence zones: the South

Pacific Convergence Zone (SPCZ), the North Pacific

Intertropical Convergence Zone (ITCZ), and the South

Indian Convergence Zone (SICZ), evident in Fig. 13a. As

such, the projections of monsoon rainfall over the Mari-

time Continent will be sensitive to the evolution of these

convergence zones. First, it should be noticed that some

models tend to produce too much rainfall in the Western

part of the ITCZ as compared to the Western part of the

SPCZ during the historical period (e.g. CCSM4, FIO-

ESM, MIROC5, NorESM-ME, in Fig. 13b). There

appears to be almost no consistency with regards to the

pattern of projected DJFM rainfall change from one

model to another (Fig. 13c). The Maritime Continent is

characterized by marked land-ocean heterogeneities, and

by high and narrow mountain ranges, with the Central

Range of Papua-New Guinea peaking at 4,884 m, and

with mountain ranges peaking between 1,000 and 3,000 m

in most of the Indonesian and Malaysian islands. These

heterogeneities lead to large differences between the

observational products. Most of the selected models cap-

ture strong monsoon precipitation over Papua-New Gui-

nea, and a few of them capture relatively realistic island-

related patterns in Indonesia and Malaysia (CCSM4,

ACCESS1-0, HadGEM2-AO in Fig. 13b). While most of

the models produce an increase of precipitation in Papua-

New Guinea during the twenty-first century, there is no

clear consensus across the selected models with regards to

monsoon rainfall changes over Indonesia and Malaysia in

DJFM (Fig. 13c).

Fig. 14 JJAS rainfall in the observations (a) and in the historical

CMIP5 simulations (b), and difference between the 2006–2100 mean

rainfall from rcp8.5 experiments and the 1850–2005 mean rainfall (c).

Maps from NorESM1-M are not shown since they are quite similar to

the maps from NorESM1-ME

b
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Now considering India and South Asia in Fig. 14, we

show that three regions receive particularly intense mon-

soon rainfall in the observations: the Western Ghats

(South-Western part of the Indian peninsula), the Eastern

coast of the Bay of Bengal, and the Eastern third of the

Himalaya. The majority of selected models are able to

capture these features, but tend to produce much stronger

rainfall than observed in the Central part of the Himalaya

(Fig. 14-b). It should be noted, however, that the uncer-

tainty in both satellite and station-based observations is

very high in this region of complex orography.

As shown in Sect. 3.3, 10 of the 11 selected models

produce more summer monsoon rainfall in India and South

Asia during the twenty-first century compared to the his-

torical period. Interestingly, all the models that produce

more land-based rainfall in the rcp8.5 scenario have most

of the rainfall increase located in the Himalaya (Fig. 14c).

There is however no consensus across the selected models

with regard to how the summer monsoon rainfall will vary

along the Eastern coast of the Bay of Bengal. Although it is

relatively uncertain, the models tend to produce slightly

less rainfall in the Western Ghats during the twenty-first

century (except FGOALS-s2, CanESM2 and NorESM1-

ME), in qualitative agreement with Rajendran et al. (2012)

who obtained such results from a high-resolution atmo-

spheric model.

5 Conclusion

In this paper, we have shown that a critical challenge in

model rainfall assessment lies in the spread of observa-

tional data. Indeed, the mean summer monsoon rainfall and

the amplitude of its interannual variability vary signifi-

cantly across these datasets. The atmospheric reanalyses

produce monsoon rainfall in the range of the observational

uncertainty. By building an envelope of the observations

and reanalyses, it is possible to identify the outliers, i.e. the

models that are significantly different from the observa-

tions. Most of the CMIP3 and CMIP5 models produce both

Indian and Australian mean summer monsoon rainfall

reasonably close to the observations/reanalyses envelope.

This is also true for the amplitude of the interannual vari-

ability of the Indian and Australian summer monsoons. The

seasonal cycle of both the Indian and the Australian

monsoons is in good agreement across the observation

products and reanalyses. Most of the CMIP3 and CMIP5

models have a seasonal cycle with a maximum rainfall at

the right season, but the seasonal cycle tends to be shorter

or longer than observed in the CMIP5 simulations, and

even more in the CMIP3 simulations. Based on the mean

monsoon rainfall, on the amplitude of its interannual

variability, and on the seasonal cycle, we select a subset of

25 models that statistically capture the main characteristics

of the monsoon, taking the observations uncertainty into

account.

Then, we have evaluated the monsoon-ENSO and

monsoon-IOD relationships in the CMIP models, because

ENSO and IOD are likely to change in a future climate,

with possible consequences for the monsoon. Because of

their difference in seasonality, the Australian/Maritime

Continent monsoon-ENSO relationship and the Indian/

South Asian monsoon-ENSO relationship are affected by

different kinds of biases in the CMIP models. As already

noted in previous studies related to the CMIP3 models, we

have confirmed that the intensity of the concomitant land-

based Australian monsoon-ENSO relationship is correlated

to the intensity of simulated ENSO (this had already been

noted by Cai et al. (2009) and Colman et al. (2011), for the

CMIP3 models). We have shown that the monsoon-ENSO

relationship over the Maritime continent is rather influ-

enced by the ability of the models to produce a cold

anomaly in the climatological warm pool during El Niño

events. In India and South Asia, the monsoon-ENSO

relationship strongly depends on the simulated seasonal

cycle of ENSO, because El Niño or La Niña events are at

their developing stage at the beginning of the monsoon

(whereas the Australian monsoon co-occurs with ENSO at

its mature stage). As the ENSO seasonal cycle is longer

than observed in the CMIP simulations (Taschetto et al.

2013), the CMIP models tend to produce monsoon rainfall

that is too much influenced by the tails of ENSO events

from the previous year. Despite significant wind anomalies

in the Indian Ocean related to IOD events, the monsoon-

IOD relationship remains relatively weak both in the

observations and in the CMIP models.

Based on these findings, we have empirically chosen a

few criteria to refine the model selection, towards models

that do not present major biases with regards to the mon-

soon-ENSO relationship. We end up with 12 models that

represent the statistical properties of the Indian and Aus-

tralian monsoon well and have also relatively good skills in

simulating ENSO-monsoon relationship. Eleven of these

12 models are from CMIP5. We have then analyzed the

change of monsoon rainfall in the rcp8.5 emission scenario

for the 10 available CMIP5 models. A large majority of

these 10 models produce significantly more summer

monsoon rainfall in India (9/10), in the South Asia region

(9/10), and in Australia (7/10) at the end of the twenty-first

century. Thus, the models generally produce 5 to 20 %

more summer monsoon rainfall in 2050–2099 as compared

to the pre-industrial period (and much more in the FGO-

ALS-s2 model). In India, most of the simulated increase

takes place in the Himalaya. By contrast, only five of the 10

models produce significantly more monsoon rainfall over

the Maritime Continent at the end of the twenty-first
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century. Two models (FGOALS-s2 and HadGEM2-AO)

project slightly less monsoon rainfall over the Maritime

Continent in the future, but associated with a strengthened

interannual variability. For the majority of the models, there

is no significant change in the amplitude of the interannual

monsoon rainfall variability. Considering maps of projected

rainfall patterns, we find no consistency between the

selected models over the Maritime Continent. These results

somewhat remind those from Haylock and McBride (2001)

and Hendon (2003) who emphasized very low spatial

coherence of interannual rainfall variability over the Mar-

itime Continent in the heart of the monsoon season (con-

trasting with the transition season prior to the monsoon).

Haylock and McBride (2001) concluded that monsoon

rainfall over the Maritime Continent was inherently

unpredictable due to the prominent role of mesoscale and

submesoscale systems strongly influenced by the presence

of high mountains and complex island-sea mixture.

Our concluding remark is that the best CMIP5 models

have stronger skills than the best CMIP3 models, but the

best models are still unable to resolve the complexity of the

Maritime Continent. This leads to the absence of model

consensus concerning the future monsoon rainfall in this

region. It is likely that high-resolution modeling is needed

to simulate the climate of this region, due to complex land/

sea distribution and to complex orography and bathymetry.
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