
Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
43rd NOAA Annual Climate Diagnostics and Prediction Workshop  
Santa Barbara, CA, 23-25 October 2018 

______________ 
Correspondence to: Laifang Li, Earth and Ocean Science, Nicholas School of the Environment, Duke University, Durham, 
NC;  E-mail: laifang.li@duke.edu 

Oceanic Water Cycle, Sea Surface Salinity, and the 
Implications for Extreme Precipitation in the US Midwest 

Laifang Li1, Raymond W. Schmitt2, Caroline C. Ummenhofer2, and Adwait Sahasrabhojanee3 
1Earth and Ocean Science, Nicholas School of the Environment, Duke University, Durham, NC 

 2Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 
3Northeastern University, Boston, MA 

1.  Introduction 

Moisture originating from the ocean surface is an ultimate source for precipitation on land. Over the global 
oceans, the largest moisture source regions are located over the subtropics where the excessive evaporation over 
precipitation has to be balanced by a net export of moisture (Schmitt 1995; Trenberth et al. 2011; Durack 2015). 
About a third of the subtropical moisture is transported and converged over the land area to sustain the terrestrial 
precipitation.  

This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Without an internal 
source of salt, surface freshwater flux associated with the oceanic water cycle is the only forcing mechanisms 
on SSS variation. Thus, the changes in SSS, interpreted as “Nature’s rain gauge”, reflect the variation of the 
oceanic water cycle (Curry et al. 2003; Durack and Wijffel 2010; Durack et al. 2012; Schmitt 2015).   

The close relationship between the SSS and oceanic water cycle and the reliance of terrestrial precipitation 
on water input from the oceans indicate that SSS variation over moisture source regions can be potentially 
utilized as a predictor of precipitation on land. This study presents evidence that the springtime SSS over the 
subtropical North Atlantic can be indicative of summer precipitation over the US Midwest. We further show 
that the linkage between the preseason SSS and Midwest summer precipitation is through the memory of the 
soil moisture and a combination of thermodynamic 
and dynamic effects of soil moisture on the 
regional moisture balance.   

The prediction of US Midwest summer 
precipitation based on Random Forest algorithm 
suggests that preseason SSS outperforms SST-
based predictors, in which a model incorporating 
SSS increases the explained variance by two folds. 
The SSS-based prediction is especially skillful in 
capturing the extremely wet summers in the US 
Midwest, such as the 1993 and 2008 cases. Thus, 
the newly identified salinity-based predictor can 
significantly improve the seasonal forecast of 
precipitation in the US Midwest, especially the 
extremes.  
2.  Data and methodology 

The precipitation data are from the NOAA 
CPC US precipitation at 0.25° spatial resolution 
and daily temporal resolution (Higgins et al. 2000). 
Summer season is defined as the June-July-August 
(JJA).  

Fig. 1. MAM climatology (1950–2009) of SSS (shaded; 
PSU), moisture flux divergence (thick contours; mm  
day-1) and the divergent component of moisture flux 
(vectors; kg m-1s-1) over the North Atlantic. The solid 
thick contour is the moisture flux divergence = 0 mm 
day-1 isoline, which defines the subtropical North 
Atlantic in this study. The domains used to calculate SSS 
indices in the four quadrants are stippled or hatched. 
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We construct a set of subtropical sea surface salinity (SSS) indices using the data archived by the EN4.2.1 
(Good et al. 2013). We first define the subtropical ocean as an area of net divergence of atmospheric moisture 
(Fig. 1). Next, the subtropical ocean is further divided into four areas according to the direction of the divergent 
component of moisture flux. For example, the northwest (NW) is where the divergent component of moisture 
flux is directed northwest toward the North America (Fig. 1). The SSS within the northwest subdomain is 
averaged and the domain average defines the NW SSS index. The same definition applies to the NE, SW, and 
SE SSS indices (Fig. 1, and Li et al. 2016). 

We applied Random Forest (RF), a machine-learning algorithm (Breiman 2001), to predict precipitation on 
land based on preseason salinity over the subtropical North Atlantic. In this study, we train the RF algorithm 
with 11 predictors, including SSS, the persistence of regional precipitation, and nine climate indices 
representing the oceanic and atmospheric modes of variability. All climate variables are averaged over MAM 
to match the SSS predictor. The performance of the RF prediction is evaluated based on the coefficients of 
determination: 𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡⁄  (i.e., the portion of variance explained by the prediction model); 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ (𝑃𝑃𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑃𝑃���)2𝑁𝑁
𝑖𝑖=1  is the total variance of observed precipitation; and 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ [𝑓𝑓(𝑋𝑋)𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑖𝑖]2𝑁𝑁

𝑖𝑖=1  quantifies the 
sum of precipitation variance unexplained by the RF prediction [𝑓𝑓(𝑋𝑋)].  

3.  Results 

3.1  Relationships between pre-season salinity and US Midwest precipitation 

Since the divergent component of moisture flux indicates where subtropical moisture will converge, the 
above defined SSS indices reflect not only the changes in surface freshwater flux but also potential geographical 
areas that will be influenced by the subtropical moisture flux. We focus on rainfall evolution over the US 
following the springtime NW SSS in that the moisture flux from this portion of the subtropical oceans tends to 
converge over the US (Fig. 1). 

Fig. 2  US precipitation anomalies (shaded; mm day-1) as (a), (c) composite and (b), (d) regressed upon MAM NW 
SSS index: (top) MAM and (bottom) JJA precipitation. The composite maps show precipitation difference 
between the top and bottom 10% SSS cases. The regions with composite/regression precipitation anomalies 
significant at the 0.05 level are hatched. 
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Both composite and linear regression 
analysis are applied to US precipitation. For the 
spring, the most significant precipitation 
anomalies associated with high NW SSS are 
located over the southern US (eastward of 
100°W), where the positive precipitation 
anomalies exceed 1 mm day-1 (Fig. 2a-b). The 
positive precipitation anomalies appear to 
propagate northward to the Midwest in the 
summer (see mechanistic discussion below), 
leading to 1.5 – 2 mm day-1 above normal 
precipitation there (Fig. 2c-d). The composite 
and linear regression results are qualitatively 
similar, suggesting that the relationship between 
SSS and precipitation is generally linear and 
symmetric (Fig. 2)  

The processes linking the springtime SSS 
and precipitation in the southern United States and how they finally affect summer precipitation in the Midwest 
is evaluated and summarized in Fig. 3 (see details in Li et al. 2016, 2018). Initially, the increased moisture 
transport from ocean to land elevated soil moisture content in the Southern and Central US during the spring 
season. In the subsequent seasons, the high soil moisture content is preserved due to the 3-6-month land surface 
memory. The high soil moisture content serves as a moisture source to the local atmospheric column by 
increasing boundary layer humidity in the Southern and Central US. With the prevailing southerly wind in the 
summer, more moisture will be converged into the US Midwest, which is thermodynamically favorable for 
heavier precipitation (Meehl and Washington 1988; Delworth and Manabe 1989; Ek and Holtslag 2004). In 
addition, the spatial distribution of soil moisture influences precipitation through atmospheric dynamics, i.e. the 
intensity of the Great Plains Low-level jet (GPLLJ). Specifically, the increased soil moisture in the Central US 
enhances the west-to-east soil moisture gradient along the slope of the Rocky Mountains. The soil moisture 
content gradient increases the zonal pressure gradient and forces the GPLLJ to intensify to balance the enhanced 
pressure gradient (Fast and McCorcle 1990, 1991). The intensified GPLLJ brings more Gulf of Mexico moisture 
northward, favors moisture flux convergence in the Midwest, and thus contributes to high precipitation 
dynamically. 

3.2  Improved rainfall prediction for the US Midwest 

The physical linkage between springtime NW SSS and summer precipitation in the US Midwest suggests 
that pre-season SSS can be a physically meaningful predictor for Midwest precipitation (Fig. 3). We thus 
implemented the springtime NW SSS into the RF algorithm to predict summer precipitation over the US 
Midwest. According to the RF algorithm, the NW SSS is ranked as the most important rainfall predictor 
compared to the other 10 predictors: the importance factor of NW SSS is 0.98, but it drops to 0.53 for Niño 3.4, 
the second most important predictor (Fig. 4a). Using the top four predictors shown in Fig. 4a, we constructed 
an RF prediction model for Midwest summer precipitation. Fig. 4b shows that the four predictors together 
explain 41% of the observed precipitation variance, and the observed precipitation is within the 95% confidence 
interval (CI) of the predictions. The prediction without the NW SSS, however, largely underestimates the 
variability of Midwest precipitation, especially the extremely wet summer in 1993 and 2008 (Weaver et al. 
2009). At the same time, the R2 between the observation and prediction decreases to 0.16 (Fig. 4c). 

3.3 Implications for extreme precipitation  

The RF algorithm suggests that salty subtropical North Atlantic in the spring can be an indicator of extreme 
summer precipitation in the Midwest (Fig. 4). Assuming a linear relationship between SSS and precipitation, 
the positive SSS anomaly in 1993 will be followed by a 0.7 mm day−1 increase in Midwest summer precipitation, 
which alone explains 37% of the observed precipitation anomalies. In contrast, the previously identified ENSO 
predictor (Mei and Wang 2011) can only explain 8%, insufficient to account for the observed 1993 extreme 

Fig. 3 Schematic figure showing the way soil moisture bridges 
the 3-mon time lag between spring SSS and Midwest 
summer precipitation (see Li et al. 2018 for detail).   
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precipitation (Patricola et al. 2015). Further, the 
SSS-based prediction forecasts 0.47 mm day−1 
precipitation anomalies in the summer of 2008. 
The predicted precipitation equates to 78% of the 
observed precipitation anomaly. Over the 1950-
2015 period analyzed in this study, a higher-than-
normal springtime subtropical North Atlantic 
SSS occurs in five out of six historical extreme 
precipitation events in the Midwest. Meanwhile, 
in all of the 6 years with the saltiest subtropical 
ocean, a wet summer ensued in the Midwest.  

In conclusion, the results demonstrate 
improvements in predicting Midwest summer 
precipitation with the knowledge of springtime 
NW SSS, especially the extreme precipitation 
events. In addition to the previously identified 
ENSO link (Trenberth and Guillemot 1996; 
Barlow et al. 2001; Hoerling and Kumar 2003), 
incorporating preseason SSS into prediction 
models can thus benefit seasonal forecasting of 
Midwest summer precipitation. 

4.  Conclusions 

From the perspective of moisture exchange 
between ocean and land, this study explores the 
feasibility of terrestrial rainfall prediction using 
SSS over the subtropical North Atlantic. 
According to the direction of the divergent 
component of moisture flux, we defined a set of 
SSS indices (Fig. 1). We found that springtime 
SSS over the NW part of the subtropical North 
Atlantic is significantly correlated with summer 
precipitation over the US Midwest (Fig. 2). The 
linkage between springtime SSS and Midwest summer precipitation is established through the ocean–land 
moisture transport, land surface–atmospheric coupling, and its impact on atmospheric dynamics and 
thermodynamics (Fig. 3). 

The close relationship between springtime SSS and US Midwest summer precipitation indicates that salinity 
variations can provide predictive values for the US Midwest. By applying the RF algorithm to Midwest summer 
rainfall predictions, we show that NWSSS in the subtropical North Atlantic can generate higher prediction skill 
than previously identified for ENSO variability (Fig. 4). Thus, a knowledge of springtime SSS in the subtropical 
North Atlantic will be valuable for predicting summer precipitation over the US Midwest, an agricultural region 
vulnerable to floods and droughts. 
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