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ABSTRACT

Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project

(CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield re-

sponses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in

southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was

related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic

variables during extreme-yield years and links to crop growth.

While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing

season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of

growing season temperatures in Iowa is projected to increase by more than 58C, and maize yield is projected to

decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-

first century because of significant projected drying during the growing season. By the late twenty-first century,

MMMgrowing season precipitation in southeasternAustralia is projected to decrease by 15%, temperatures are

projected to increase by 2.88–4.58C, and wheat yields are projected to decline by 70%. Results highlight the

sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the

sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected

drying over southernAustralia acrossmodels is reflected in consistent yield decreases for the twenty-first century.

Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain

production in some current centers of production, especially in marginal areas.

1. Introduction

Agroecosystems, which include pasture and crop-

land, cover nearly 40% of Earth’s land surface

(Ramankutty and Foley 1999; Asner et al. 2004; Foley

et al. 2005) and are increasingly vulnerable to changes

in mean climate, its variability and extremes. Modeling

these changes accurately at the regional scale is im-

portant to prioritize adaptation measures to continue

to provide food for a growing global population. Here,

we explore how changing climatic conditions in the

twentieth and twenty-first centuries affect crop pro-

duction in two agriculturally important regions: the

state of Iowa in the Corn Belt of the Midwest United

States, one of the world’s most agriculturally domi-

nated and productive regions (Hatfield 2012), as well as

a semiarid wheat-growing region in southeastern

Australia. Using output from global general circulation

models (GCMs) in phase 5 of the Coupled Model In-

tercomparison Project (CMIP5), we force a dynamic

vegetation model to simulate yields for maize in Iowa
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and wheat in southeastern Australia for historical and

projected scenarios. Changes in the mean and vari-

ability of hydroclimatic conditions in the two regions

are evaluated as to their impact on crop yields. The

objectives of this study were to 1) analyze historical

and projected means, seasonality, and variability for

temperature and precipitation; and 2) analyze how

these hydroclimatic variables affect variability in maize

and wheat yields in two important cropping regions

(Fig. 1).

Previous studies have linked variations in climate

to agricultural productivity of cereals around the world

on interannual to decadal time scales, such as the El

Niño–Southern Oscillation (ENSO) for Australian

wheat (Nicholls 1985; Power et al. 1999) and maize in

the United States (Malone et al. 2009; Persson et al.

2009) and the North Atlantic Oscillation/Pacific de-

cadal oscillation for maize (Malone et al. 2009) and

wheat in the United States (Mehta et al. 2012) and

wheat in Europe (Cantelaube et al. 2004; Atkinson

et al. 2005).

Crops in the Midwest United States have the benefit

of being located in the midlatitudes, a location for which

modeling studies predict crop-yield increases, to a point,

asmean temperatures rise (Arnell et al. 2002; Southworth

et al. 2000, 2002). However, it has been shown that yield

increases in response to increasing temperature reach

a peak, after which further increases in temperature re-

sult in decreases in yield, either directly from plant re-

sponse to high temperatures or from moisture stress

induced by the high temperatures (Cai et al. 2009;

Schlenker and Roberts 2009; Lobell et al. 2011a). Recent

work on observed climate and crop production trends

since the 1980s already found 10% yield declines globally

for cereal crops for every 18C warming, except in high-

latitude countries (Lobell et al. 2011b).

Further complicating the interactions of crop pro-

duction and climate is the potential for increased climate

variability in the form of extreme events of flood and

drought (e.g., Dai et al. 1998; Dai 2013). The Midwest

has sustained the majority of losses because of several of

the most costly historic flooding events in the United

FIG. 1. Flowchart providing a schematic overview of the study’s components and the analyses

presented.
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States. On the other hand, with most of the region’s

agriculture being rain fed, the Midwest is highly vul-

nerable to summer drought, as in 1988 and 2012

(Andresen et al. 2012). Analyzing projections for the

Midwest in a range of global and regional climate

models, Patricola and Cook (2013) found consistently

wetter spring conditions in the twenty-first century, with

.66% of the considered models agreeing and a less

consistent tendency for drier summers. While climate

modeling studies, in addition to mean changes, predict

an increase in extreme events in the Midwest United

States and other regions in a warming world, less is

known about how these events will affect future crop

production (Porter and Semenov 2005).

In the context of extremes, ‘‘killing degree days’’

above 298C for maize are commonly modeled to de-

crease yields through accelerated growth or direct tissue

or enzyme damage (Butler and Huybers 2013). Recent

empirical analysis of over 20 000 maize trials in Africa

found that each degree day above 308C reduced the final

yield from 1% to 1.7% for optimal rain-fed and drought

conditions, respectively (Lobell et al. 2011a). Analysis of

U.S. crop data found that increasing temperatures up to

298C for maize and 308C for soy increased yields but that

temperatures above these thresholds resulted in severe,

nonlinear declines in yields: using the Agricultural

Production Systems Simulator (APSIM) formaize in the

Midwest United States, Lobell et al. (2013) showed

a strong negative yield response to temperatures above

308C and a weak effect of seasonal rainfall, with im-

proved transpiration efficiency at elevated CO2 levels

compensating a small proportion of the negative effects.

There is a seasonal dependence, with certain physio-

logical processes more sensitive to temperature, such as

the period of sowing to emergence, anthesis, and grain

filling, as summarized in a recent review by Sanchez

et al. (2014).

Grain-growing regions in southeastern Australia,

accounting for 13% of the country’s winter crop pro-

duction (ABARE 2007), are more sensitive to water

availability: as Australia’s climate is relatively dry and

the crop is almost entirely rain fed, water supply is the

most critical factor affecting wheat yields overall

(French and Schultz 1984). Using APSIM, Wang et al.

(2009) found wheat yield across the Murray–Darling

basin in Australia’s southeast to be closely related to

stored soil moisture at the time of sowing and growing

season rainfall. The effect of projected climatic con-

ditions on wheat yields across the region in the twenty-

first century were assessed byWang et al. (2011); along

a north–south transect, they found warmer sites to be

more sensitive to temperature increases, as were drier

sites in the west compared to the cooler/wetter east.

While yields in the cooler and wetter sites in the east

could benefit from elevated CO2 levels by 2050, the

drier sites in the west were already affected by de-

clining rainfall, which was seen to increasingly affect

all but the very wettest sites at higher elevation by 2070

(Wang et al. 2011). Porter and Gawith (1999) review

maximum temperature limits for wheat, with certain

physiological growth stages exhibiting different

temperature sensitivities. Beyond these thresholds,

impacts on yield are observed for maximum tempera-

tures above 328C for sowing to emergence, 318C for

anthesis, and 338–378C for grain filling, though, in

particular for the latter, temperature sensitivity could

differ by up to 35% between cultivars (Porter and

Gawith 1999). A recent crop model intercomparison

by Asseng et al. (2013) emphasized that crop models

need to be improved, in particular their skill to simu-

late the effects of heat stress on plant growth and

wheat yields, with the latter varying more widely in

response to temperature variations than to the level

of CO2.

Given the changes in mean climate and its variability,

it is important to assess the extremes of the distribu-

tion (i.e., years or periods with particularly high or low

yields), as they significantly affect the viability of an

agricultural enterprise. While recent work has focused

on identifying climate extremes and seeking their

impact on yields, we define extreme thresholds based

on modeled yields directly, allowing the dependent

variable to guide further investigation. As such, we

propose that this approach is more meaningful for

understanding future yield impacts driven by hydro-

climatic year-to-year variability, rather than long-term

average conditions.

The remainder of the paper is structured as follows:

section 2 describes the observational products, climate

model output, and the dynamic vegetation agricultural

IBIS model (Agro-IBIS). In section 3, cropping and cli-

mate characteristics of the two study regions are detailed.

The fidelity of historical crop yields simulated in Agro-

IBIS is evaluated in section 4. Mean projected changes in

yield by the end of the twenty-first century are assessed in

section 5, their evolution in section 6. Section 7 details

extreme years in crop yield, along with the respective

climate anomalies during these years (section 8). Our

main findings are summarized in section 9.

2. Datasets and models

a. Observational products

A series of observational and reanalysis products were

used, both for the statistical downscaling (cf. section 2b)
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and to assess the representation of the models’ climate

conditions at the two chosen study locations: Iowa at

42.58N, 93.758W and southeastern Australia at 37.58S,
142.58E. While each site consists of a single grid point, it

is representative of the climatic conditions of the

broader region. Observed monthly precipitation data

are from the Hulme land precipitation dataset for the

period 1900–98 (Hulme 1992, 1994). Minimum and

maximum air temperatures (Tmin and Tmax) are based

on the NOAA–CIRES Twentieth-Century reanalysis,

version 2, available for the period 1871–2010 (Compo

et al. 2006).

To force Agro-IBIS with observational products, we

used weather and climate information derived from

a combination of monthly climatic observations and

daily, reanalyzed meteorological data on a 0.58 3 0.58
latitude–longitude grid. These driver sets were created

by combining 1961–90 climatological mean values and

1901–2005 monthly mean climate data, as given by the

University of East Anglia Climate Research Unit data-

sets (CRU05; New et al. 1999; Mitchell and Jones 2005),

with daily anomalies of meteorological data for 1948–

2005 from the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis (Kalnay et al. 1996; Kistler

et al. 2001). The monthly average precipitation values of

these daily values were mathematically forced to equal

the monthly CRU05 values. Using these data, Agro-

IBIS calculates hourly values empirically using diurnal

relationships of meteorological variables (Campbell and

Norman 1998).

b. Climate models

For the two locations, climatic variables used in Agro-

IBIS were based on output from six state-of-the-art

GCMs generated as part of CMIP5 (Table 1). The rep-

resentative location of 43.258N, 93.258W was chosen for

Iowa and, for southeastern Australia, 36.758S, 142.258E
(as the closest grid point location to the observed; for

further details, see section 3). Monthly bias-corrected

CMIP5 output was analyzed for the following three

scenarios: historical, RCP4.5, and RCP8.5. RCP4.5 and

RCP8.5 refer to the representative concentration path-

ways (Moss et al. 2010; Riahi et al. 2011), where the

radiative forcing in 2100 will be approximately

4.5Wm22 and 8.5Wm22 higher, respectively, than in

the preindustrial period. RCP4.5 is a stabilization sce-

nario, where radiative forcing peaks by 2100, while

RCP8.5 is a scenario of very high greenhouse gas emis-

sions, where radiative forcing does not peak by 2100

(IPCC 2013). For consistency, an equal number of years

was analyzed for each scenario: that is, 1910–2005 for the

historical and 2006–2100 for the future projections

(RCP4.5 and RCP4.5). Only one ensemble member

(r1i1p1) was used for each model.

DOWNSCALING

The climate model data for all locations were bias

corrected (downscaled) using quantile mapping to his-

torical climate data at a 0.58 grid cell resolution (cf.

section 2a). The bias correction was conducted using the

R statistical program contributed package qmap, which

performs a quantile mapping using robust empirical

quantiles (Gudmundsson et al. 2012). Interpolation

beyond the range of the historical distribution was

conducted using a linear interpolation suggested by

Boé et al. (2007). All results shown and discussed for

the GCMs in this study are after bias correction and

downscaling.

c. Agro-IBIS model simulations

Agro-IBIS is a dynamic global vegetation model

adapted from the Integrated Biosphere Simulator

(Foley et al. 1996; Kucharik et al. 2000) to simulate the

growth and management of food (Kucharik and Brye

2003) and bioenergy crops (VanLoocke et al. 2010,

2012), as well as the growth of natural vegetation. The

model’s hierarchical structure simulates fast-response

processes that vary hourly, such as energy, water,

TABLE 1. Summary of CMIP5 models used in this study, including the shortened acronym used here, the model’s full acronym, and

institute.

Shortened acronym Full model acronym Institute (country)

CSIRO CSIRO Mk3.6.0 Commonwealth Scientific and Industrial Research Organization (Australia)

GISS GISS-E2-R NASA Goddard Institute of Space Studies (United States)

IPSL IPSL-CM5A-MR L’Institute Pierre-Simon Laplace (France)

MIROC MIROC5 Atmosphere and Ocean Research Institute at the University of Tokyo,

National Institute for Environmental Studies, and Japan Agency

for Marine-Earth Science and Technology (Japan)

NCAR CCSM4 National Center for Atmospheric Research (United States)

NOAA GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory (United States)
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carbon, and momentum balance of the vegetation can-

opy and soil; processes that vary daily such as leaf

growth; and slow-response processes like soil carbon

storage and turnover. Agro-IBIS was developed to

capture key differences in C3 and C4 crop physiology,

phenology, and carbon allocation. Net primary pro-

ductivity is simulated at each model step by scaling the

net effects of photosynthesis and autotrophic respiration

to the canopy. For C3 species, the model uses a widely

tested semimechanistic model for photosynthesis

(Farquhar et al. 1980) and an empirical model for sto-

matal conductance (Ball et al. 1987). For C4 species,

Agro-IBIS uses a coupled model of photosynthesis and

stomatal conductance (Collatz et al. 1992; Farquhar

and Sharkey 1982). Agro-IBIS simulates the growth

stages of crops, including planting, emergence, grain or

pod fill, senescence, and harvest, according to accu-

mulated growing degree-days (GDD). When accumu-

lated GDD thresholds are reached, the crop transitions

from one growth stage to the next, and with this come

shifts in carbon allocation to leaves, stems, roots, and

reproductive systems. The fraction of carbon allocated

to leaves, stems, and roots decreases after peak leaf

area index is reached and eventually reaches zero,

while allocation to reproductive systems increases to 1.

Through its physiological and phenological algorithms,

crops in Agro-IBIS will respond to changes in tem-

perature by changing carbon assimilation rates either

directly because of changes in temperature, or in-

directly because of induced moisture stress, and by

changing simulated planting dates and transitioning to

growth stages at different times as GDD are accumu-

lated more or less rapidly. Changes in all of these

processes contribute to changes in crop yield by either

changing the magnitude of carbon assimilation or

changing crop duration. For more information on

Agro-IBIS processes and parameters, please see

Kucharik and Brye (2003), Kucharik (2003), and Twine

et al. (2013). The model is responsive to management

options (e.g., irrigation, fertilizer application, and

planting date) and environmental stresses (e.g., tem-

perature, moisture, radiation, and humidity). Input

requirements include soil texture class at each of 11 soil

layers with variable depths, solar radiation or cloud

cover, air temperature, precipitation, humidity, and

wind speed.

Agro-IBIS has been successfully evaluated for its

simulation of crop yields (Kucharik 2003), leaf area

index, gross primary productivity (Twine and Kucharik

2008; Schaefer et al. 2012), and surface energy balance

(Kucharik and Twine 2007; Webler et al. 2012). The

model has also been used to evaluate impacts of ni-

trogen leaching on nitrate export in the Mississippi

River basin (Donner et al. 2002; Donner and Kucharik

2008), trends in productivity in the twentieth century

(Twine and Kucharik 2009), climate-regulation ser-

vices of natural and agricultural ecoregions throughout

the Western Hemisphere (Anderson-Teixeira et al.

2012), and effects of trends in planting date and cultivar

on yields and surface energy balance (Sacks and

Kucharik 2011).

SIMULATIONS WITH OBSERVATIONS AND CLIMATE

MODEL OUTPUT

To evaluate the ability of the model to capture

historic crop yields, we first ran Agro-IBIS with

observation-based climate datasets at each of our sites.

At the U.S. site, the nitrogen fertilizer application

rates were input at historic rates that increased nearly

linearly from 3.5 kg ha21 in 1950 to 135 kg ha21 in 1985,

then continuing at 135 kg ha21 until 2005. As historic

nitrogen fertilizer application rates were unavailable

at the southeast Australian site, we used fixed

43 kg ha21 (FAO 2012). Historic simulated maize yield

for 1951–2005 at the U.S. site was evaluated against

reported yields based on crop-yield surveys for the

counties contained within the model grid cell (USDA-

NASS 2009); the simulated wheat yield for 1982–2000

at the southeast Australian site was evaluated against

a gridded global yield dataset derived by combining

yield survey and remotely sensed net primary pro-

duction (NPP; Iizumi et al. 2014). Yield data from the

grid cell that is closest to our site were used in the

comparison.

We then drove Agro-IBIS with bias-corrected GCM

output for the twenty-first century. Unlike in the runs to

validate Agro-IBIS, nitrogen fertilizer application

rates were held constant for the entire run with GCM

output at a present-day value of 135 kg ha21 at the U.S.

site (USDA 2013) and 43 kg ha21 at the southeast

Australian site (FAO 2012) in order to assess the re-

sponse of yield to changes in climate only. The maize

cultivar was fixed at requiring 1700 GDD (base tem-

perature 5 108C) to maturity, and winter wheat was

fixed at requiring 2200 GDD (base temperature5 08C)
to maturity. In addition, we used prognostic planting

dates. For maize, the planting date was determined as

the date when 10-day average temperature was higher

than 108C and the 10-day average Tmin was higher than

68C. For winter wheat, the planting date was de-

termined as the date when 5-day average Tmin dropped

below 58C.
In all model runs, Agro-IBIS was forced with in-

formation on soil texture class that varies by depth from

the surface to 2.5m. For the U.S. site, soil texture for 11

soil layers was input from the conterminous United
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States multilayer soil characteristics database (CONUS-

SOIL; Miller and White 1998), which is based on the

State Soil Geographic Database (STATSGO) soil sur-

vey. For the Australian site, soil texture was determined

from the International Geosphere–Biosphere Program

(IGBP 2000) global soil dataset. Although Agro-IBIS

simulates the response of C3 and C4 crops to increasing

CO2 concentrations (Twine et al. 2013), in this study we

held CO2 constant at mid-twentieth century levels in all

runs to isolate the indirect effects of climate change on

crop yield.

3. Cropping/climate characteristics of study regions

a. Site selection and description

Two different locations were selected for this study,

representative of the larger regions, both in regard

to climate and cropping characteristics. The first loca-

tion is in central Iowa at 438N, 938W, where maize

cropping is prevalent. For the second location, a domi-

nant wheat-cropping region in southeastern Australia

was chosen: 378S, 1428E in the Wimmera in western

Victoria northwest of Melbourne. Throughout the re-

mainder of the study, the seasons we refer to are specific

to the respective hemisphere, without the addition of

‘‘boreal’’ and ‘‘austral’’ in each instance. The term

‘‘growing season’’ refers to the period May–September

and June–October in Iowa and southeastern Australia,

respectively.

Located in the U.S. Midwest Corn Belt, Iowa is

dominated by its continental location: summers are

influenced by the incursion of warm, humid tropical

airmasses, while the position and configuration of the

polar jet stream exerts the dominant climatic influence

throughout the remainder of the year (Andresen et al.

2012). Iowa is ranked first in the nation for acres of

maize for grain (USDA-NASS 2009) and showed the

highest yield per harvested acre in 2011. Maize is grown

as a summer crop, with the most active planting occur-

ring between 25 April and 18 May. Harvest usually

occurs between 5 October and 9 November. While pre-

cipitation during the growing season (May–September)

plays a major role in influencing year-to-year variability

in maize yield, studies have shown that over longer time

scales, maize yields are negatively correlated with tem-

perature (Lobell and Asner 2003; Lobell and Field 2007;

Twine andKucharik 2009). Therefore, increasing average

temperatures have likely already limited maize yield in

Iowa and will likely continue to contribute to reductions

in potential maize yield.

The Wimmera region in southeastern Australia is

an important grain-growing region, which lies in the

Australian premium white wheat area. Together with

the Mallee region to the north, it accounts for 75% of

Victoria’s wheat production (DEPI 2012), with the

latter providing 11% of the total Australian wheat

production (2008–13 average; ABARE 2013). The

climate of the broader Wimmera region is character-

ized by hot summers and mild winters. Wheat is grown

as a winter crop, with sowing mostly in May and June,

but ranging from as early as April under ideal condi-

tions to as late as August in extreme dry conditions

(Stephens and Lyons 1998). The arrival of the autumn

break, the first good rainfall of the autumn season, is

thus keenly anticipated to allow for sowing, and its

delay or failure can severely impact crop yields (Pook

et al. 2009). As in maize, increasing daily maximum

temperatures have been associated with decreases in

wheat yield (Porter and Gawith 1999), though rising

minimum temperatures and reduced frosts have been

linked to increased wheat yields in Australia (Nicholls

1997).

b. Historical and projected climate in Iowa

The observed seasonal cycle in precipitation in

Iowa is characterized by a minimum during winter

(30mmmonth21) and increased precipitation during

May through September (60–160mm month21; Fig. 2).

After downscaling, all six models in the historical sce-

nario have a realistic representation of the observed

seasonal cycle in precipitation and lie within 61 stan-

dard deviation of the mean observed seasonal cycle

(gray shading in Fig. 2), with the exception of under-

estimating rainfall during the wintertime minimum

(November–February). Changes in precipitation pro-

jected for the future scenarios are generally small, with

little difference between the RCP4.5 and RCP8.5 sce-

narios. There is, however, a tendency across models

toward increased spring rainfall in future, and possibly

a slight reduction during summer in some models

(Figs. 2g,j), consistent with previous findings (e.g.,

Patricola and Cook 2013).

Mean observed Tmin in Iowa centers on 2118C in

January and 1188C in July, with little interannual

variability (Fig. 2). In the historical scenario, all models

lie within this variability for Tmin. Mean Iowa Tmin is

projected to rise by 28–38C in the future, with slightly

higher values in RCP8.5 than for RCP4.5 (e.g., Fig. 2b).

The projected increases seem to be largest during

winter and summer and smaller during spring and

autumn.

The mean observed Tmax lies around248C in January

and 1288C in August, both well captured within the

interannual observed variability in the historical simu-

lation by the models (Fig. 2). Projected increases in
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FIG. 2. Seasonal cycle of (left) precipitation (mmmonth21), (middle) Tmin (8C), and (right) Tmax (8C)
in Iowa in models for different scenarios: historical (black), RCP4.5 (blue), and RCP8.5 (red). The gray

shading represents the 61 std dev around the observed mean seasonal cycle for the respective variable.
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mean Tmax range between 28–58C for different models

and seasons. Increases during summertime are particu-

larly pronounced for July andAugust in the GISS, IPSL,

andMIROCmodels (Figs. 2f,i,l). Several models project

a considerable difference in the Tmax rise between the

RCP4.5 and RCP8.5 scenarios (e.g., CSIRO and IPSL;

Figs. 2c,i).

It is of interest to explore changes in the observed and

simulated seasonal cycle of precipitation and tempera-

tures in Iowa over time. Figure 3 shows the seasonal

cycle for different 20-yr periods for the twentieth cen-

tury for observations, and the multimodel mean

(MMM) in the three different scenarios (historical,

RCP4.5, and RCP8.5). The observed seasonal cycle in

FIG. 3. Seasonal cycle of observed andmultimodel mean of (left) precipitation (mmmonth21), (middle)Tmin (8C), and (right)Tmax (8C)
for Iowa, shown for the observations compared with the three scenarios (historical, RCP4.5, andRCP8.5) for different 20-yr periods indicated

in color [see key in (l)].
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precipitation is characterized by considerable decadal

variability, but there is an indication of slight increases in

precipitation during spring and summer in the latter half

of the twentieth century, compared to earlier 20-yr pe-

riods (Fig. 3a). The seasonal cycle of precipitation in the

MMM historical scenario broadly agrees with the ob-

served seasonal distribution andmagnitudes (Fig. 3d), but

the simulated seasonal cycle is slightly amplified andmore

narrowly confined to the April–October months and ex-

hibits less decadal variability. Furthermore, winter pre-

cipitation (November–February) is underestimated in

the MMM compared to the observed (Figs. 3a,d). Pro-

jected changes in precipitation for Iowa by the end of the

twenty-first century are small in the RCP4.5 scenario

(Fig. 3g). In contrast, for the RCP8.5 scenario, increased

precipitation is projected for the March–May (MAM)

months, with lower rainfall later in the season in August–

September by the end of the twenty-first century (Fig. 3j),

consistent with Patricola and Cook (2013).

For Tmin, the seasonal cycle for the observed and

MMM are in close agreement, varying between 2108C
in winter and 1158C in summer, with little decadal

variability (Figs. 3b,e). For the twenty-first century,

projections of Tmin show increasingly higher tempera-

tures toward the end of the century in the RCP4.5 and

RCP8.5 scenarios (Figs. 3h,k), with higher increases in

RCP8.5: Tmin values at the end of the twenty-first cen-

tury in RCP8.5 are up to 68C higher during winter and

summer, and slightly less during spring and autumn,

compared to the start of the century (Fig. 3k). Even

greater changes are seen for Tmax, with the MMM sea-

sonal cycle at the end of the twenty-first century ap-

proaching 408C in the RCP8.5 scenario for Iowa

(Fig. 3l).

c. Historical and projected climate in southeastern
Australia

Precipitation in southeastern Australia at 378S, 1428E
is characterized by enhanced cool-season rainfall,

predominantly during May–September. Observed

winter [June–August (JJA)] precipitation has a mean

of;70mmmonth21, while mean summer [December–

February (DJF)] precipitation is ;35mmmonth21

(Fig. 4a). After downscaling, the models largely capture

the observed seasonal cycle in precipitation (Fig. 4).

One exception is the IPSL model, which has a tendency

for overly uniform rainfall throughout the year and thus

has a dry bias during JJA (Fig. 4g). Projections for the

twenty-first century across models indicate a decrease in

precipitation, especially pronounced in spring (e.g.,

Fig. 4p). There is also a hint of reduced precipitation in

late autumn in several models in the twenty-first century

(e.g., Figs. 4g,p), with autumn being the season with the

largest observed rainfall decline in recent decades

(Timbal and Drosdowsky 2013, and references therein).

The recent (and projected) precipitation decline in au-

tumn has large implications for the region’s agricultural

productivity, given the importance of the autumn break

for sowing of winter wheat (Pook et al. 2009).

The seasonal cycle in observed Tmin varies between

168C in DJF and 68C in JJA (Fig. 4b). All models in the

historical scenario capture the observed seasonal cycle

in Tmin well. Mean projected increases in Tmin in the

twenty-first century are on the order of 28–38C across the

models. There is some seasonality to the projected Tmin

increase, with larger values seen in winter and summer,

but there is some inconsistency amongst models. The

mean observed Tmax lies between 278C in summertime

and lows of 128C during winter (Fig. 4c). The observed

Tmax seasonal cycle is well represented in the models’

historical scenario. Projected increases in Tmax are

comparable in size and seasonality to the projections of

Tmin. Consistent increases in projected Tmax outside the

observed variability are seen across the models, espe-

cially in JJA (Fig. 4).

The development of the seasonal cycle in precipitation

and temperatures is further assessed inFig. 5 in theMMM

for southeastern Australia. Given the range in the ob-

served seasonal cycles in precipitation for the different

20-yr periods, it is clear that the region experiences sub-

stantial decadal variability in rainfall (Fig. 5a; Pook et al.

2009). There is an indication of reduced rainfall in recent

decades in late autumn, consistent with earlier work (e.g.,

Cai and Cowan 2008, 2013; Timbal and Drosdowsky

2013) and associated with tropical sea surface tempera-

tures and associated wave train response, a poleward shift

of maximum baroclinicity, and changes in the subtropical

ridge, respectively. While the historical and RCP4.5 sce-

narios in the MMM do not clearly reflect this decline in

autumn precipitation (Figs. 5d,g), it is apparent inRCP8.5

(Fig. 5j). The MMM seasonal cycle in RCP8.5 overall

projects drier conditions toward the end of the twenty-

first century in southeasternAustralia, particularly during

autumn and spring, in linewith earlier findings for phase 3

of the Coupled Model Intercomparison Project (CMIP3)

models (e.g., Pitman and Perkins 2008).

The seasonal cycle in Tmin indicates a rise in recent

decades in the observed, compared to the start of the

twentieth century, predominantly during austral sum-

mer and the second half of the year (Fig. 5b). This is not

well reproduced in the historical scenario (Fig. 5e).

Projections of Tmin by the end of the twenty-first century

show a substantial rise in temperature of 18–28C
throughout the year for RCP4.5 and in excess of 38C for

RCP8.5 (Figs. 5h,k). The development of Tmax mirrors

that for Tmin, in that the 18–28C summertime rise in
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FIG. 4. Seasonal cycle of (left) precipitation (mmmonth21), (middle) Tmin (8C), and (right) Tmax (8C)
in southeastern Australia in models for different scenarios: historical (black), RCP4.5 (blue), and

RCP8.5 (red). The gray shading represents the61 std dev around the observed mean seasonal cycle for

the respective variable.
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observed recent decades is not reflected in the historical

MMM (Figs. 5c,f). Using a range of CMIP3 models to

assessTmax andTmin over Australia, Perkins et al. (2009)

found that less skillful models (i.e., those that showed

less skill in representing twentieth century conditions)

overall simulated enhanced warming for the twenty-first

century compared to those that were more skillful,

which showed more moderate warming. This needs to

be kept in mind for interpreting the Tmax increase of 18–
28C by the end of the twenty-first century in RCP4.5 and

in excess of 38Cwarming projected in RCP8.5 (Figs. 5i,l)

and their potential impacts on yield.

FIG. 5. Seasonal cycle of observed andmultimodel mean of (left) precipitation (mmmonth21), (middle)Tmin (8C), and (right)Tmax (8C)
for southeastern Australia, shown for the three scenarios (historical, RCP4.5, and RCP8.5) for different 20-yr periods indicated in color

[see key in (c)].
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4. Agro-IBIS evaluation

The dynamic vegetation model Agro-IBIS was eval-

uated to ensure its suitability for the present study. At

the U.S. site, Agro-IBIS driven with observation-based

climate data (CRU) simulated a median maize yield of

8.2Mgha21 over the past 50 years, slightly higher than

the 6.7Mgha21 observed (Fig. 6a). We expect observed

historic yield to be somewhat overestimated in the

model because of the relatively high GDD requirement

for maturity in the model and the lack of representation

of real-world stresses (e.g., weeds, pests, and differences

in farmer management). We chose a GDD requirement

in the upper range of cultivars reported for this region

(Neild andNewman 1987), because currently this should

simulate greater yield than a lower GDD requirement.

In the future, more rapid GDD accumulation with in-

creases in temperature could lead to shorter crop duration

and limit yields, and we want to quantify this predicted

effect. The Pearson correlation coefficient between ob-

served yield and that simulated with the observation-

based climate data is 0.83 (p , 0.001; not shown),

suggesting that the model captures year-to-year variabil-

ity in yield well. This is also borne out by the comparable

minimum and maximum yield values, as well as the in-

terquartile range in Fig. 6a. When the model was driven

with downscaled GCM output for the historic scenario,

the simulated yield was close to observed yields with

a median yield of 7.1Mgha21 for the MMM, compared

with the observed 6.7Mgha21 (Fig. 6a).

At the southeast Australian site, Agro-IBIS captured

the overall magnitude of the wheat yield. The 19-yr

median yields simulated with CRU data and GCM

output were 2.2Mgha21 and 1.9Mgha21 in the MMM,

respectively, compared with the reported 2.1Mgha21

(Fig. 6b). This also seems to be consistent with the av-

erage 2.3Mgha21 in 2011 reported by the Department

of Environment and Primary Industries (DEPI 2012) for

the Wimmera region and falls within the range of yields

presented by Asseng et al. (2013) for Australia. While

the interquartile range of simulated wheat yield for the

MMM is in agreement with observations, it is larger and

skewed toward higher yield values when forcing Agro-

IBIS with CRU data. This can be explained by several

reasons: First, the grid cell of the historic yield dataset

used in the comparison does not completely overlap

with our grid cell as a result of its different spatial res-

olution; given themeridional gradient in precipitation in

this region, this can affect yields obtained. Second, the

yield dataset was derived based on yield statistics and

satellite-derived NPP. As such, the evaluation yield

dataset for the southeastern Australian site has greater

uncertainty than the one at the U.S. site, which was

based on crop-yield surveys for the counties in the

model grid cell (USDA-NASS 2009). Third, as in the

maize simulation, Agro-IBIS is not able to capture all

FIG. 6. Box-and-whisker plot of observed and simulated yield (Mg ha21) for (a) maize in Iowa and (b) wheat in

southeastern Australia. Shown are the observations (OBS) from USDA-NASS (2009) for Iowa and Iizumi et al.

(2014) for southeastern Australia, the Agro-IBIS run with observed climate variables from the CRU dataset

(CRU), and the Agro-IBIS run with multimodel mean (historical scenario) from six downscaled GCMs. The box is

delimited by the 25th and 75th percentile, with themedian indicated as the line in between; the whiskers correspond

to minimum and maximum values.
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the real-world stresses that might have an impact on the

actual yield. Notwithstanding these caveats, our evalu-

ation suggests that Agro-IBIS is sensitive to climatic

variations, adequately represents observed yield statis-

tics at our two sites, and is an effective tool to assess the

impact of a changing climate on crop yield.

5. Changes in mean climate and crop yield

Having evaluated the climate and crop model to our

satisfaction, for the remainder of the study, we assessed

output from the Agro-IBIS simulations forced with

downscaled GCM output for the historical, RCP4.5,

and RCP8.5 emissions scenarios, as described in sec-

tion 2c. It is of interest to assess the effect on year-to-

year crop-yield anomaly that projected growing season

changes in precipitation and temperature will have in

the twenty-first century, relative to a historical base-

line. In Fig. 7, year-to-year percent anomaly in crop

yield is shown in relation to temperature and pre-

cipitation changes individually, as well as in combina-

tion, for individual years in the period 2071–2100,

compared to a historical baseline average of 1951–80

(for all GCMs and emission scenarios). For both Iowa

and southeastern Australia, we found that increases in

temperature negatively affected yields (Figs. 7a,b),

while increases in precipitation positively affected

yields (Figs. 7c,d). Generally speaking, based on the

slope of the lines in Fig. 7 (all highly statistically sig-

nificant at p , 0.01), a temperature increase of 18C
resulted in a yield decrease of 10% in Iowa and 15% in

southeastern Australia (Figs. 7a,b). In contrast, a pre-

cipitation increase of 10mmmonth21 resulted in a 12%

rise in yield in Iowa and a 9% rise in Australia (Figs. 7c,

d). With this said, the specific change in yield will de-

pend on the interaction of both temperature and pre-

cipitation and their timing, which we will further assess

in the following sections.

It is also apparent from Fig. 7 that changes in tem-

perature and precipitation during the growing season

work together to impact crop yields; however, their

effects are not additive. Their combined effects on

crop yield are shown in Figs. 7e,f as a percentage

change in the yield achieved in individual years during

the period 2071–2100 in the RCP4.5 and RCP8.5 sce-

narios, relative to the 1951–80 baseline in the histor-

ical run.

Overall changes in crop yield by the end of the twenty-

first century (2071–2100) compared to a baseline for the

1951–80 period in the historical run are shown in Fig. 8.

For Iowa, the median increase in crop yield in the

RCP4.5 scenario is 6% across the six GCMs, while a

median yield decrease of 221% is recorded for RCP8.5

(Fig. 8a). In contrast, for southeasternAustralia, median

yield decreases by close to250% and275% for RCP4.5

and RCP8.5, respectively (Fig. 8b). The projected

wheat yield decreases in southeastern Australia here

are larger than the changes found by Potgieter et al.

(2013), who reported decreases of 25% to 230% for

inland Victoria. However, their analysis period of

2020–50, compared to the period 2071–2100 used here,

likely accounts for some of the differences in projected

yield change.

6. Evolution of crop-yield distribution

a. Iowa

Because yield is a function of carbon accumulation in

the crop throughout its growth, we analyzed monthly

NPP in order to understand how the crop responds to

changes in climate at various stages of its growth and to

evaluate how the timing of extremes in climate can af-

fect yield. Figure 9 shows the evolution of the seasonal

cycle in NPP in Iowa for maize for 20-yr periods in the

MMM and for individual models for the historical,

RCP4.5, and RCP8.5 scenarios. The MMM of NPP in

the historical scenario is 0 during the winter months,

starts increasing in May with the start of the growing

season, reaching 0.4 kgm22 in July, and decreasing

sharply thereafter (Fig. 9a). There is good agreement in

overall shape amongst models. However, slightly higher

peak NPP rates during JJA are seen with GISS and

NOAA (Figs. 9g,s), with lower values in IPSL (Fig. 9j),

and an (earlier) shift by 1–2 months in the NCARmodel

(Fig. 9p). The MMM seasonal cycle of NPP does not

differ much from one 20-yr period to another for the

historical scenario (Fig. 9a). In contrast, there is some

decadal variability in NPP apparent in individual

models, in particular for CSIRO, IPSL, and MIROC

(Figs. 9d,j,m). The NOAA model hints at small in-

creases in NPP during autumn (August–October) to-

ward the end of the historical run, compared to earlier

20-yr periods (Fig. 9s), potentially related to coincident

late-summer increases in Iowa precipitation in that

model (figure not shown).

The projected NPP in Iowa in July in the MMM for

the RCP4.5 scenario is lower at the end of the twenty-

first century, compared to earlier 20-yr periods, andNPP

remains reduced for the August–October period

(Fig. 9b). For the RCP4.5 scenario, there is considerable

disagreement between the models as to the projected

NPP changes: CSIRO and GISS indicate unchanged or

slightly higher NPP during summer and autumn

(Figs. 9e,h). This is also the case for IPSL in early

summer, though a sharp decline toward the end of the

twenty-first century in August is projected (Fig. 9k). The
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FIG. 7. Percentage change of future/projected crop yield in relation to a change in (a),(b) temperature (8C),
(c),(d) precipitation (mm month21), and (e),(f) temperature and precipitation combined for (left) maize in Iowa

and (right) wheat in southeastern Australia over the respective growing season. Symbols represent individual

years in the period 2071–2100 for each of the six GCMs in the RCP4.5 (triangles) and RCP8.5 (circles) scenarios,

relative to a baseline for 1951–80 in the historical scenario.
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NOAA model projects increased NPP in July and Au-

gust by the 2050s, compared to the start and end of the

twenty-first century (Fig. 9t). In contrast, summer and

autumn NPP in the MIROC and NCAR models are

considerably reduced by the end of the twenty-first

century in RCP4.5 (Figs. 9n,q), possibly related to the

considerable drop in projected summertime pre-

cipitation (for MIROC; Fig. 2).

For the RCP8.5 scenario, shifts in the MMM NPP

seasonal cycle over the twenty-first century are appar-

ent: while NPP peaks in July at the start of the twenty-

first century, the peak occurs progressively earlier (by

June by the end of the twenty-first century; Fig. 9c).

Coincident with that shift in the NPP seasonal cycle is

a progressive decrease in late summer and autumn NPP

toward the end of the twenty-first century. Both the

advance in the NPP seasonal cycle and decrease at the

end of the growing season by the end of the twenty-first

century are consistently seen across models in the

RCP8.5 scenario but are especially pronounced in

IPSL, MIROC, and NCAR (Figs. 9l,o,r), all models

with a pronounced projected summertime drop in

precipitation (Figs. 2g,j,m).

b. Southeastern Australia

We also assessed the evolution of the seasonal cycle

of NPP for wheat in southeastern Australia in the

MMM and individual models for the three scenarios

(Fig. 10). Here, the NPP in the MMM for the historical

scenario is 0 from January to June, starts increasing in

July, peaks in October, and sharply decreases thereaf-

ter with the end of the growing season (Fig. 10a). Most

of the models closely agree with regard to the timing of

the seasonal cycle of NPP in the historical scenario. An

exception is the IPSLmodel, whose NPP seasonal cycle

is shifted forward by two months (Fig. 10j), possibly

related to its lack of a well-defined annual cycle in

precipitation and overall low winter rainfall (Fig. 4g).

Generally, models with higher annual total and win-

tertime precipitation tend to feature high NPP rates,

compared to dry-biased models with low NPP, such as

IPSL (cf. Figs. 4, 10). While NPP in the different 20-yr

periods does not differ in the MMM for the historical

scenario, several models (GISS and IPSL) indicate

reduced NPP by the end of the twentieth century

compared to earlier periods (Figs. 10g,j).

For the twenty-first century, the MMM NPP in the

RCP4.5 scenario is substantially reduced at 62% or

less of the historical NPP (Fig. 10b). A progressive

decrease in NPP over the course of the twenty-first

century is also apparent for the different 20-yr pe-

riods. Individual models reflect this progressively

lower NPP by the end of the twenty-first century, in

particular the CSIRO, MIROC, NCAR, and NOAA

models (Figs. 10e,n,q,t). In the RCP8.5 scenario, the

progressively lower NPP in the MMM is even more

FIG. 8. Range of projected percentage crop-yield changes for (a) Iowa and (b) southeastern Australia, av-

eraged for the period 2071–2100 for the RCP4.5 and RCP8.5 scenarios, relative to a baseline for 1951–80 in the

historical scenario for all six GCMs. The box is delimited by the 25th and 75th percentile, with the median

indicated as a thick line in between; the whiskers correspond to 1.5 of the interquartile range; and dots cor-

respond to outliers.

15 JUNE 2015 UMMENHOFER ET AL . 4667



FIG. 9. Seasonal cycle of model total NPP of carbon (kgm22) for Iowa, shown for the

multimodel mean and individual models and scenarios (historical, RCP4.5, and RCP8.5)

for different 20-yr periods indicated in color.
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FIG. 10. Seasonal cycle of model total NPP of carbon (kgm22) for southeastern

Australia, shown for the multimodel mean and individual models and scenarios (his-

torical, RCP4.5, and RCP8.5) for different 20-yr periods indicated in color.
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apparent, with NPP by the end of the twenty-first

century down to 40% of the rate at the start of the

century (Fig. 10c), with results also robust across in-

dividual models.

7. Extreme high-/low-yield years

We examined the climate during years recording

particularly high/low crop yields in the two regions for

the historical and two future emission scenarios.

Extreme-yield years were defined using three options,

following the approach for maize from Kucharik and

Ramankutty (2005), where years exceeding average

crop yield by 68% (option 1), 620% (option 2), or

16% or 214% (option 3) were defined as extreme.

Time series of simulated annual crop yield (Mgha21)

for Iowa (Fig. 11) and southeastern Australia (Fig. 12)

for the three options show that there is very little dif-

ference in the number of extreme years according to

options 1 and 3. As per the design, option 2 consistently

classifies fewer years as being extreme and a higher

number as average (Figs. 11, 12).

For Iowa, the historical average across all models for

the three options of extreme years was 34 high- and 35

low-yield years (Fig. 11). This changed only slightly

under both RCP4.5 (40 high and 37 low) andRCP8.5 (35

high and 41 low). However, there was substantial vari-

ability between climate models in the projection of ex-

treme years both historically (e.g., relatively few

extreme years were modeled by GISS, MIROC, and

NOAA, as seen in the wide gray bars in Fig. 13) and in

the future, where half the climate models predicted an

increase in high-yield years (GISS, IPSL, and NOAA),

and the other half predicted an increase in low-yield

years (CSIRO, MIROC, and NCAR). All climate

models predict an increase in extremes (whether more

high or low years) by a factor of two or more. Two of the

three models projecting more frequent high crop-yield

years overall record future increased or sustained levels

of summer precipitation in Iowa (cf. Figs. 2d,p), and the

third has similar precipitation, except under RCP8.5

(Fig. 2g). In contrast, the models with more low-yield

years tend to record decreased summer precipitation,

particularly for July and most pronounced in the

MIROC model (cf. Fig. 2j).

For southeasternAustralia, the amount of interannual

variability varies betweenmodels, such as low variability

for MIROC (Fig. 12j) and higher variability for NOAA

(Fig. 12p). However, there is overall much greater in-

termodel agreement in the number of extreme years for

both historical and future scenarios, with an average of

33 high and 34 low crop-yield years, respectively, in the

historical scenario across the three extreme-yield

options. In contrast to Iowa, all models show a consis-

tent, dramatic drop in southeast Australian crop yield

for the twenty-first century: averaging across the six

climate models, only 4 years record a high yield in both

future scenarios, while 77 years (RCP4.5) and 83 years

(RCP8.5) are classified as low-yield years. For the

RCP8.5, half of the models (CSIRO, IPSL, andMIROC)

also show a sudden decrease in yield in the second half of

the twenty-first century, possibly related to a decrease in

cool-season precipitation post-2060 (cf. Fig. 5j).

Since the results did not differ appreciably between

the three different options for extreme crop-yield years

(not shown), we examined option 2 (i.e., extreme years

exceeding average yield by more than 620%) in more

detail to compare differences between climate models

and scenarios.

For maize in Iowa, while there was substantial varia-

tion between climate models (e.g., GISS predicted only

11 good years under historical conditions, while NCAR

predicted 32; the average across all six climate models

for option 2 was 24 high-yield years), all models showed

similar trends under both future scenarios, with little

difference between the RCP4.5 and RCP8.5 scenarios

(Fig. 13a). Three models (CSIRO, MIROC, and NCAR)

predicted fewer high-yield years andmore low-yield years

in the future (up to 67 years with low crop yield for

MIROCunderRCP8.5, retaining only 3 high-yield years).

Three models (GISS, IPSL, and NOAA) predicted a re-

duction in low-yield years and an increase in years with

high crop yield in the future; for IPSL, the future pro-

jected nearly all years to be high yielding (Fig. 13a).

The projections for wheat in southeastern Australia

are more consistent between models, with all models

agreeing on a similar distribution of extreme years under

the historical scenario, with, on average, 25 high-yield

years and, on average, 28 low-yield years (Fig. 13b). In

the future, all models agree that, under both scenarios,

years with low crop-yield increase in frequency to

dominate 66–81 out of the 95 years, with few average

years and very few to no high-yield years remaining

under both RCP4.5 andRCP8.5 (Fig. 13b). This suggests

continued wheat cultivation in southeastern Australia

would be extremely difficult under current management

practices, and substantial adaptation would be required

to continue wheat production there under the future

predicted climate.

8. Climate anomalies during high/low crop-yield
years

a. Iowa

To evaluate climatic factors potentially contributing

to the extremes in crop yield, we show precipitation and
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FIG. 11. Model crop yield (Mg ha21) for Iowa, shown as time series for the different models and scenarios (historical, RCP4.5, and

RCP8.5). The horizontal lines indicate the cutoff values for option 1 (R red, extreme years classified as exceeding average by68%), option

2 (B blue, exceeding 620%), and option 3 (G green, exceeding 16% or 214%), with the number of high-/low-yield years selected

according to the respective cutoff indicated above/below the time series.
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FIG. 12. Model crop yield (Mg ha21) for southeastern Australia, shown as time series for the different models and scenarios (historical,

RCP4.5, and RCP8.5). The horizontal lines indicate the cutoff values for option 1 (R red, extreme years classified as exceeding average by

68%), option 2 (B blue, exceeding620%), and option 3 (G green, exceeding +6% or 214%), with the number of high-/low-yield years

selected according to the respective cutoff indicated above/below the time series.

4672 JOURNAL OF CL IMATE VOLUME 28



FIG. 13. Number of years of average or extreme yields for the different climate models and

scenarios for (a) maize in Iowa and (b) wheat in southeastern Australia. High-yield years are

defined as those exceeding the long-term average yield by 20% (green bars), and low-yield

years are defined as those with yields 20%below the long-term average (red bars), with average

years shown in gray.
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temperature anomalies during high and low crop-yield

years for Iowa in Figs. 14–16. Themean seasonal cycle of

precipitation in Iowa for the six different models and

three emissions scenarios is indicated in Fig. 14 during

years defined as high and low crop-yield years with the

blue and red lines, respectively. To determine whether

the mean seasonal cycle during these extreme years

differs significantly from average years, a boot-strapping

method (i.e., Monte Carlo test) was employed: for

a particular scenario and model, the same number of

years defined as either having high or low yield were

randomly selected from the historical scenario. This was

repeated 25 000 times to generate an expected distri-

bution of the seasonal cycle for a given number of years.

The blue and red shading in Fig. 14 thus represents the

90% confidence level of this expected distribution for

high and low crop-yield years, respectively. Wherever

a blue/red line lies outside the blue/red shading, the

precipitation in the high-/low-yield years differs signifi-

cantly from average years. It should be noted that be-

cause of differing numbers of high and low crop-yield

years, the width of the confidence level indicated by the

shading deviates; where shading in only one color is

shown, the number of years does not differ, and the

shading applies to both high and low crop-yield years

(irrespective of its color).

For the historical scenario, most models indicate that

years with a low crop yield are characterized by a sig-

nificant reduction in precipitation during summer:

NOAA for July–August (Fig. 14p), MIROC andNCAR

for JJA (Figs. 14j,m), and CSIRO for June–September

(Fig. 14a); only GISS and IPSL do not record significant

deviations in precipitation during low-yield years

(Figs. 14d,g). Conversely, high-yield years exhibit

anomalous wet conditions during summertime: en-

hanced precipitation during July in the GISS and

NOAA models (Figs. 14d,p), JJA in CSIRO and

MIROC (Figs. 14a,j), May–September in NCAR

(Fig. 14m), and September only in IPSL (Fig. 14g).

In the twenty-first century for the RCP4.5 emissions

scenario, high crop-yield years are characterized in

several models by significantly enhanced early-summer

precipitation, such as May–July (NCAR and NOAA;

Figs. 14n,q) and May–August (CSIRO; Fig. 14b). The

GISS model exhibits anomalous wet conditions for

much of the first half year (i.e., March–July) during high-

yield years and for February–April of low-yield years

(Fig. 14e). Years with low crop yield in RCP4.5 exhibit

significant reductions in July precipitation, consistent

across all models. This reduction in summer pre-

cipitation is also apparent during low-yield years in the

RCP8.5 scenario, though the decrease often extends

beyond the month of July. Overall, fewer high-yield

years are seen for Iowa in the RCP8.5 (relative to

RCP4.5), but the anomalous high precipitation is more

extensive: above-average precipitation occurs for much

of the year for the CSIRO, GISS, NCAR, and NOAA

models (Figs. 14c,f,o,r) during years with high crop yield

in Iowa in RCP8.5.

Temperature anomalies have also been shown to in-

fluence variations in maize yield, with negative effects

on future maize yield projected because of rising tem-

peratures (e.g., Schlenker and Roberts 2009; Lobell

et al. 2011a; Butler and Huybers 2013; Lobell et al.

2013). Given the seasonal dependence of the suscepti-

bility of plants during specific physiological stages to

temperature stress (Sanchez et al. 2014), we thus show

the seasonal cycle of Tmin and Tmax in Iowa during high

and low crop-yield years for the CSIRO and MIROC

models for the three emissions scenarios in Fig. 15. The

CSIRO and MIROC models were chosen as a result of

the large magnitude of the projected increase in Tmin

andTmax in Iowa in the twenty-first century (Figs. 2b,c,k,l),

with the summertime rise in Tmax in MIROC largest of

all the models analyzed here. Significance levels were

determined as for precipitation in Fig. 14. The Tmin

during high and low crop-yield years in the historical

simulation only deviated slightly from average years

during July and August for both models (Figs. 15a,d). In

the twenty-first century, Tmin in both models is signifi-

cantly higher than present average conditions through-

out the year in low crop-yield years, but especially

during June–September for both emissions scenarios,

and also for January–February in RCP8.5 (Figs. 15b,c,e,f).

While warmer Tmin throughout the year in the twenty-

first century also characterize high-yield years in the

CSIRO model (Figs. 15b,c), significantly warmer tem-

peratures in MIROC are only seen in the RCP8.5 sce-

nario (Fig. 15f): it seems that Tmin in RCP4.5 in MIROC

during high-yield years does not differ significantly from

average historical conditions, but it does for RCP8.5; it

should be noted that the small number of high-yield

years in MIROC in the twenty-first century and the re-

sultant width of the expected distribution could play

a role in this result.

The Tmax are significantly increased during low crop-

yield years in Iowa in the historical simulation, whileTmax

does not deviate significantly from average conditions

during high-yield years (Figs. 15g,j). While both high and

low crop-yield years in the twenty-first century are char-

acterized by significantly warmer Tmax for much of the

year than during historical average years (Figs. 15h,i,k,l),

this is especially pronounced during low-yield years: Iowa

summertime Tmax exceeds historical levels by 58C or

more, particularly in July andAugust, for both models. In

contrast, high-yield years in summertime in RCP4.5 do
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FIG. 14. Seasonal cycle of precipitation (mmmonth21) during years with high (blue) and low

(red) crop yield (according to yields exceeding620% of average, as in option 2 in Fig. 11) for

Iowa, shown for the three scenarios (historical, RCP4.5, and RCP8.5) across the different

models. Shading indicates the 90% confidence level around an average seasonal cycle for the

respective number of extreme years in the scenario and model, as determined by Monte Carlo

testing. Where the red (blue) line lies outside the shaded area, the values are significantly

different from the average seasonal cycle in the historical scenario.
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FIG. 15. Seasonal cycle ofTmin andTmax (8C) during years with high (blue) and low (red) crop yield (according to yields exceeding620%

of average, as in option 2 in Fig. 11) for Iowa, shown for the three scenarios (historical, RCP4.5, and RCP8.5) across the different models.

Shading indicates the 90% confidence level around an average seasonal cycle for the respective number of extreme years in the scenario

and model, as determined by Monte Carlo testing. Where the red (blue) line lies outside the shaded area, the values are significantly

different from the average seasonal cycle in the historical scenario.
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FIG. 16. Average May–September Iowa precipitation anomaly (mm month21) for the three

scenarios during high/low crop-yield years for the (a) CSIRO and (b) NCARmodel, shown as

dots for the individual years. The colored boxes are delimited by the upper and lower quartiles,

with the middle bar denoting the median precipitation anomaly for the respective scenario:

historical (black), RCP4.5 (blue), and RCP8.5 (red). Error bars indicate the value the median

needs to exceed to be significantly different from 0 (at the 90%confidence level, as estimated by

Monte Carlo testing) for the different scenarios, with asterisks indicating significance. The

number N indicates the number of years exceeding the cutoff crop yield for each scenario.

Wherever the median precipitation anomalies during high and low years do not overlap with

the error bar, precipitation during the extreme years differs significantly from average historical

conditions.
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not show significantly warmer Tmax compared to histori-

cal average conditions, but they do for the first half of the

year (Figs. 15h,k). Given the negative effect of Tmax on

maize yield (Lobell et al. 2011a, 2013; Sanchez et al. 2014),

which we also see for low-yield years, the more moderate

Tmax in high-yield years could contribute to the higher

yields recorded.

Given the distinct seasonal cycle in precipitation

during high and low crop-yield years in Iowa identified

here (cf. Fig. 14), it is of interest to further investigate

precipitation anomalies during extreme years. Figure 16

shows Iowa precipitation anomalies averaged over the

May–September months during the maize growing

season during high and low crop-yield years for the three

scenarios for the CSIRO and NCAR model. Both the

CSIRO and NCAR models show a robust precipitation

response during extreme years in the historical scenario

(Figs. 14a,m), whilemaintaining sufficient extreme years

in the twenty-first century to explore precipitation

anomalies during these years in the twenty-first century

(unlike, for example, the MIROC model, which also

exhibits significant precipitation anomalies in the

twentieth century but has only a few years with extreme

high yield in the twenty-first century; Figs. 14j–l).

For theCSIROmodel, it is apparent that yearswith high

crop yield are characterized by significantly enhanced

May–September precipitation in Iowa compared to

average years (Fig. 16a). While median precipitation

anomalies in the historical scenario are on the order of

15mmmonth21, this increases to 30mmmonth21 in the

RCP4.5 and RCP8.5 scenarios for high-yield years.

Low crop-yield years in the CSIRO model exhibit sig-

nificant reductions in precipitation on the order of

220mmmonth21 for historical and future scenarios alike

(Fig. 16a). For theNCARmodel, high crop-yield years are

characterized by significantly enhanced May–September

median precipitation anomalies, on the order of120,125,

and 130mmmonth21 for the historical, RCP4.5, and

RCP8.5 scenarios, respectively (Fig. 16b). In contrast, low

crop-yield years are characterized by substantial decreases

in median precipitation of215 (historical),25 (RCP4.5),

and 210mmmonth21 (RCP8.5; Fig. 16b).

b. Southeastern Australia

Climate anomalies during extreme crop-yield years in

southeastern Australia are shown in Figs. 17–19. In the

historical scenario, there is a tendency across several

models for high (low) crop-yield years to be associated

with significantly wetter (drier) conditions during austral

spring compared to average years (Figs. 17a,d,j,m,p), es-

pecially pronounced in the NOAAmodel for the August–

November months (Fig. 17p). The very small number of

high crop-yield years in the twenty-first century makes it

difficult to determine statistically robust results for de-

viations in the seasonal cycle of precipitation for these

years. In contrast, the large number of low-yield years in

the twenty-first century in RCP4.5 and RCP8.5 are

characterized by anomalous low precipitation compared

to historical conditions for most of the year, but in par-

ticular for austral spring (Fig. 17).

For the most part, the seasonal cycle of minimum and

maximum temperature for the CSIRO and MIROC

models indicate that extreme crop-yield years do not

significantly deviate from average historical conditions

in the twentieth century in southeastern Australia

(Fig. 18). One exception is warmer (colder) Tmax con-

ditions during austral spring for low (high) crop-yield

years, respectively (Figs. 18g,j). For the twenty-first

century, no significant deviations are seen in the sea-

sonal cycle for Tmin or Tmax during years with high crop

yield. In contrast, low crop-yield years are characterized

by significantly warmer Tmin and Tmax values for most of

the year for bothmodels in RCP4.5 and evenmore so for

RCP8.5. This is consistent with previous work doc-

umenting that extreme high temperatures adversely af-

fect wheat yields (e.g., Nicholls 1997; Porter and Gawith

1999; Wang et al. 2011). Again, for the interpretation of

these results, one has to bemindful of the disparity in the

number of future high and low crop-yield years.

Examples of southeastern Australian precipitation

anomalies during the growing season (June–October) for

extreme crop-yield years are provided for the CSIRO and

NOAA models (Fig. 19), which exhibit significant de-

viations in springtime precipitation for high- and low-

yield years during historical conditions (Figs. 17a,p). In

bothmodels, high crop yield is associated with anomalous

wet conditions, both in the historical scenario and even

more so during the few high-yield years in the twenty-first

century. While median precipitation anomalies on the

order of 112mmmonth21 occur during high-yield years

under historical conditions, the median anomaly in

RCP4.5 is approximately 125 and 127mmmonth21 for

RCP8.5 for the NOAA model (Fig. 19b). In the CSIRO

model, growing season rainfall during low-yield years

does not deviate significantly from average conditions in

the historical scenario; in the twenty-first century, how-

ever, significant reductions in precipitation occur during

low-yield years in southeasternAustralia for bothRCP4.5

and RCP8.5 (Fig. 19a). In the NOAA model, years with

low crop yield are characterized by anomalous dry con-

ditions in all three scenarios (Fig. 19b).

9. Summary

We used multiple CMIP5 climate models and sce-

narios to assess historical and future hydroclimatic
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FIG. 17. Seasonal cycle of precipitation (mm month21) during years with high (blue) and low

(red) crop yield (according to yields exceeding +/220% of average, as in option 2 in Fig. 12) for

southeastern Australia, shown for the three scenarios (historical, RCP4.5, and RCP8.5) across

the different models. Shading indicates the 90% confidence level around an average seasonal

cycle for the respective number of extreme years in the scenario and model, as determined by

Monte Carlo testing. Where the red (blue) line lies outside the shaded area, the values are sig-

nificantly different from the average seasonal cycle in the historical scenario.
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FIG. 18. Seasonal cycle of Tmin and Tmax (8C) during years with high (blue) and low (red) crop yield (according to yields exceeding

+/220% of average, as in option 2 in Fig. 12) for southeastern Australia, shown for the three scenarios (historical, RCP4.5 and RCP8.5)

across the different models. Shading indicates the 90% confidence level around an average seasonal cycle for the respective number of

extreme years in the scenario andmodel, as determined byMonte Carlo testing.Where the red (blue) line lies outside the shaded area, the

values are significantly different from the average seasonal cycle in the historical scenario.
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FIG. 19. Average June–October southeasternAustralian precipitation anomaly (mmmonth21)

for the three scenarios during high/low crop-yield years for the (a) CSIRO and (b) NOAA

model, shown as dots for the individual years. The colored boxes are delimited by the upper and

lower quartiles, with the middle bar denoting the median precipitation anomaly for the re-

spective scenario: historical (black), RCP4.5 (blue), and RCP8.5 (red). Error bars indicate the

value the median needs to exceed to be significantly different from 0 (at the 90% confidence

level, as estimated by Monte Carlo testing) for the different scenarios, with asterisks indicating

significance. The number N indicates the number of years exceeding the cutoff crop yield for

each scenario. Wherever the median precipitation anomalies during high and low years do not

overlap with the error bar, precipitation during the extreme years differs significantly from

average historical conditions.
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conditions and their effect on maize yield in Iowa and

wheat in southeast Australia. The agreement between

simulated maize (wheat) yield in Agro-IBIS and ob-

served yields in Iowa (southeastern Australia) attests

the model’s effectiveness to assess the impact of climate

variability and change on crop yield. Beyond mean

changes in precipitation, Tmin, and Tmax, emphasis was

placed on changes in year-to-year variability in these

variables, seasonal changes during sensitive phases in

crop growth, and climatic conditions during years with

extreme crop yield.

For Iowa, precipitation changes are small in the

RCP4.5 scenario, but in RCP8.5, spring precipitation in

the twenty-first century is projected to increase across

models, while some also indicate a slight reduction in

summer precipitation (Figs. 2, 3), resulting in negligible

overall growing season precipitation change for Iowa in

the MMM (Table 2). Warmer temperatures, especially

in summer and winter for Tmin and summer for Tmax, are

projected to occur across the models (Fig. 2), with

growing season temperature changes in the MMM on

the order of 13.68 to 15.58C (16.38 to 19.58C) by the

end of the twenty-first century for RCP4.5 (RCP8.5)

(Table 2). While changes in Iowa maize yield by the end

of the twenty-first century are small in RCP4.5 (18%),

reductions on the order of 220% are projected in

RCP8.5 (Fig. 8, Table 2). In the historical scenario, the

number of high-, low-, and average-yield years in Iowa is

comparable across models at a third each. For the

twenty-first century, the three models recording in-

creased or sustained summer precipitation project more

frequent high-yield years and fewer years with low crop

yield (Figs. 2, 11). In contrast, the three models projec-

ting decreased Iowa summer precipitation indicate

fewer high-yield years and more frequent low-yield

years. In the twenty-first century, high crop-yield years

record significantly enhanced early-summer pre-

cipitation, while low-yield years are characterized by

significant reductions in summer precipitation and

anomalously high Tmax (Figs. 14–16), both likely factors

contributing to the reduced yield in these years.

In southeastern Australia, the projections indicate

a reduction in precipitation in the twenty-first century,

especially pronounced in spring and in late autumn

TABLE 2. Changes in growing season precipitation, Tmin, Tmax, and yield in Iowa and southeastern Australia in the RCP4.5 and RCP8.5

scenarios relative to historical conditions, averaged over the last 30 years in each scenario for six GCMs and the multimodel mean. The

growing season in Iowa (southeastern Australia) is May–September (June–October).

Model Scenario

Changes in

Precipitation Tmin Tmax Yield

Iowa CSIRO RCP4.5 17% 14.38C 14.48C 218%

RCP8.5 15% 17.48C 18.28C 227%

GISS RCP4.5 14% 13.18C 16.28C 11%

RCP8.5 22% 15.88C 110.38C 217%

IPSL RCP4.5 113% 13.78C 15.48C 1106%

RCP8.5 28% 16.88C 111.28C 123%

MIROC RCP4.5 215% 15.28C 19.48C 238%

RCP8.5 216% 18.08C 112.58C 246%

NCAR RCP4.5 26% 14.08C 16.08C 237%

RCP8.5 211% 15.88C 19.38C 233%

NOAA RCP4.5 13% 11.28C 11.78C 0%

RCP8.5 16% 14.28C 15.28C 26%

MMM RCP4.5 11% 13.68C 15.58C 18%

RCP8.5 24% 16.38C 19.58C 218%

Australia CSIRO RCP4.5 219% 12.08C 12.88C 265%

RCP8.5 232% 13.38C 14.78C 286%

GISS RCP4.5 0% 11.38C 12.28C 229%

RCP8.5 26% 12.88C 14.38C 264%

IPSL RCP4.5 29% 10.78C 12.58C 247%

RCP8.5 220% 11.68C 14.88C 279%

MIROC RCP4.5 16% 12.08C 12.98C 243%

RCP8.5 14% 13.18C 14.28C 261%

NCAR RCP4.5 25% 11.78C 13.18C 235%

RCP8.5 22% 13.28C 15.48C 266%

NOAA RCP4.5 215% 11.38C 12.38C 247%

RCP8.5 231% 12.78C 13.88C 272%

MMM RCP4.5 27% 11.58C 12.68C 244%

RCP8.5 215% 12.88C 14.58C 271%
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(April–June) in the RCP8.5 scenario (Figs. 4, 5j), re-

sulting in a decrease in growing season rainfall in the

MMM of 27% (215%) by the end of the twenty-first

century in the RCP4.5 (RCP8.5) scenario (Table 2).

MMM growing season temperatures are expected to

increase by 11.58 to 12.68C (12.88 to 14.58C) for the
RCP4.5 (RCP8.5) scenario (Table 2). Given the in-

creasingly drier and warmer growing season conditions,

wheat yield in southeastern Australia is projected to

decrease on the order of 250% to 270% by the end of

the twenty-first century for RCP4.5 and RCP8.5, re-

spectively (Fig. 8, Table 2). While the yield decreases

projected here for wheat in Australia are on the high

end, they do not appear to be out of the range of likely

scenarios. In their review summarizing results from

several previous studies, Wheeler and von Braun (2013)

recorded average-yield losses of 20% for southeastern

Australia by 2050 for a range of emissions scenarios.

Challinor et al. (2010) simulated an upper range of crop

failure rates for wheat in China without adaptation

above 50% with an increase in local mean temperature

between 48–68C. Rather than focusing on crop failure,

Asseng et al. (2011) modeled wheat yields in Australia

directly, finding reductions in grain production of up to

50% with temperature increases of 28C, mostly attrib-

uted to temperatures above 348C. A meta-analysis

conducted two decades ago showed that wheat yields

in Australia and the United States were already reduced

10%–15% by temperatures above the optimum during

the sensitive stages of anthesis and grain filling and that

temperatures in Australia routinely reached between

308–408C during grain filling (Wardlaw and Wright

1994). An experiment applying a 408C heat stress

treatment around anthesis produced-yield decreases of

50% (Ferris et al. 1998). A recent analysis concluded

that existing models likely underestimate yield losses for

128C by up to 50% in India by neglecting to account for

the effects of extreme heat on wheat senescence (Lobell

et al. 2012).

Our results found that, while maize in Iowa can ex-

perience yield increases across many of the temperature

and precipitation changes projected in the future

(Fig. 7e), wheat in southeasternAustralia is poisedmuch

closer to a biophysical threshold where future changes

are nearly all negative (Fig. 7f). Yields in different

growing areas may be limited by different combinations

of biophysical factors, and further analysis is needed to

examine how temperature and precipitation changes are

projected to vary in major global growing areas to de-

termine how this would affect crop yields regionally.

The number of high- and low-yield years, which in the

historical scenario is consistent across models at a third

each, changes dramatically in the twenty-first century:

the number of high-yield years drops to less than 10%,

while in excess of 60%–80% of years are low yielding

(Figs. 12, 13). In the historical scenario, high (low) crop-

yield years are associated with significantly wetter

(drier) conditions during austral spring compared to

average years, which becomes more pronounced for

extreme-yield years in future (Figs. 14–19). Significant

decreases in growing season rainfall by the end of the

twenty-first century in southeastern Australia clearly

influence wheat yields, as do higher maximum temper-

atures in the RCP8.5 scenario during low-yielding years.

This study simulated the effects of temperature and

precipitation on crop yields, finding decreases in yields

projected. Actual yield losses may be partly offset by

projected increases in CO2, which have been found to

increase yields in C3 crops such as wheat, and to a lesser

extent C4 crops such as maize, particularly under

moisture stress (Ainsworth and Long 2005; Leakey et al.

2006; Lobell and Field 2008; McGrath and Lobell 2011).

For example, the CO2 increase over the past 50 years has

been estimated to increase U.S. maize yields by 9% in

dry years (McGrath and Lobell 2011). Future work

could make more realistic estimates of yields using new

parameters in IBIS to model the effects of both CO2 and

ozone on crop yields (Twine et al. 2013).

Our results highlight that projections of future crop

yield are highly sensitive to the nature of hydroclimatic

changes. Where future hydroclimatic changes are un-

certain, as for example for precipitation in Iowa, where

half the GCMs project an increase and half a decrease of

growing season rainfall, the sign of the crop-yield change

simulated by the dynamic vegetation model is uncertain

as well. In contrast, broad agreement in projected drying

over southern Australia across GCMs is reflected in

consistent crop-yield decreases for the twenty-first cen-

tury. Better understanding of projected changes in mean

conditions, seasonal cycle, and in particular variability,

along with the associated uncertainties across models

and time scales in GCMs, is warranted for improved

projections of yields of various staple grains. Our results

suggest that managers planning for climate adaptation

should focus on adaptation measures that address pre-

cipitation decreases that will challenge conditions for

wheat growing in Australia and precipitation decreases

and increased temperatures in Iowa, but further exam-

ination of these measures is needed.
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